Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/39252
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorValiente, David-
dc.contributor.authorRodríguez Mas, Fernando-
dc.contributor.authorAlegre Requena, Juan V.-
dc.contributor.authorDalmau, David-
dc.contributor.authorFlores, María-
dc.contributor.authorFerrer, Juan C.-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2026-02-12T17:50:09Z-
dc.date.available2026-02-12T17:50:09Z-
dc.date.created2025-
dc.identifier.citationExpert Systems with Applications, Vol. 296, Part A (2026)es_ES
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://hdl.handle.net/11000/39252-
dc.description.abstractPhotovoltaic (PV) energy plays a key role in addressing the growing global energy demand. Organic solar cells (OSCs) represent a promising alternative to silicon-based PVs due to their low cost, lightweight, and sustainable production. Despite achieving power conversion efficiencies (PCEs) over 20 %, OSCs still face challenges in stability and efficiency. Recent advances in manufacturing, artificial intelligence and machine learning (ML) achieve optimized and screened OSCs for greater sustainability and commercial viability, thus potentially reducing costs while ensuring stable and long term performance. This work presents optimal ML models to represent the temporal degradation on the PCE of polymeric OSCs with structure ITO/PEDOT:PSS/P3HT:PCBM/Al. First, we generated a database with 166 entries with measurements of 5 OSCs, and up to 7 variables regarding the manufacturing and environmental conditions for more than 180 days. Then, we relied on a software framework that provides a conglomeration of automated ML protocols that execute sequentially against our database by simply command-line interface. This easily permits hyper-optimizing the ML models through exhaustive benchmarking so that optimal models are obtained. The accuracy for predicting PCE over time reaches values of the coefficient determination widely exceeding 0.90, whereas the root mean squared error, sum of squared error, and mean absolute error are significantly low. Additionally, we assessed the predictive ability of the models using an unseen OSC as an external set. For comparative purposes, classical Bayesian regression fitting are also presented, which only perform sufficiently for univariate cases of single OSCs.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent14es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectorganic solar cellses_ES
dc.subjectpower efficiency degradationes_ES
dc.subjectmultilayer structurees_ES
dc.subjectmachine learninges_ES
dc.subjectregressiones_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria::621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicacioneses_ES
dc.titleGeneral machine learning models for interpreting and predicting efficiency degradation in organic solar cellses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.eswa.2025.128890es_ES
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones


thumbnail_pdf
Ver/Abrir:
 General_machine_learning_models.pdf

2,28 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.