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Photovoltaic (PV) energy plays a key role in addressing the growing global energy demand. Organic solar cells
(OSCs) represent a promising alternative to silicon-based PVs due to their low cost, lightweight, and sustain-
able production. Despite achieving power conversion efficiencies (PCEs) over 20 %, OSCs still face challenges
in stability and efficiency. Recent advances in manufacturing, artificial intelligence and machine learning (ML)
achieve optimized and screened OSCs for greater sustainability and commercial viability, thus potentially reduc-
ing costs while ensuring stable and long term performance. This work presents optimal ML models to represent
the temporal degradation on the PCE of polymeric OSCs with structure ITO/PEDOT:PSS/P3HT:PCBM/ALl. First,
we generated a database with 166 entries with measurements of 5 OSCs, and up to 7 variables regarding the
manufacturing and environmental conditions for more than 180 days. Then, we relied on a software framework
that provides a conglomeration of automated ML protocols that execute sequentially against our database by
simply command-line interface. This easily permits hyper-optimizing the ML models through exhaustive bench-
marking so that optimal models are obtained. The accuracy for predicting PCE over time reaches values of the
coefficient determination widely exceeding 0.90, whereas the root mean squared error, sum of squared error,
and mean absolute error are significantly low. Additionally, we assessed the predictive ability of the models
using an unseen OSC as an external set. For comparative purposes, classical Bayesian regression fitting are also
presented, which only perform sufficiently for univariate cases of single OSCs.

1. Introduction

Electricity consumption has evolved exponentially over the last three
decades, increasing from a total estimate of 15277 to 29479 TWh be-
tween 2000 and 2023, respectively (Ritchie and Roser, 2024). One of the
immediate consequences has been reflected in the price of this energy.
Simultaneously, in the technological realm, there has been a notable
shift in electricity generation towards renewable sources. Particularly,
the maturity of conventional photovoltaic (PV) cells and the emergence
of new organic and hybrid materials have made it possible to get signifi-
cant improvements in PV generation and its power conversion efficiency
(PCE) (New Media Consortium, 2025). However, even though the global
consumption of PV energy has increased from 1.08 to 1629.9 TWh be-
tween 2000 and 2023 (Ritchie and Roser, 2024), its generation still falls
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short of meeting current demands. Hence, there are many challenges and
open lines for improving the generation and efficiency of PV cells.

In this context, organic solar cells (OSCs) have emerged as a promis-
ing alternative to silicon-based solar cells since, amongst other ben-
efits, their production involves low-temperature manufacturing meth-
ods (Seo et al., 2015) and reduced carbon footprint. Their appeal also
lies in the ease of processing, low cost, flexibility, and lightweight (Yeh
& Yeh, 2013). Moreover, the evolution of their PCEs has been much
superior to classical technologies and it has been on par with other con-
sidered emerging technologies, presenting efficiencies that exceed val-
ues of 20 % (Ayub et al., 2023). Even though the commercialization of
OSCs still faces various challenges, including stability and efficiency,
some cost studies (Chiappafreddo & Gagliardi, 2010; Rodriguez-Mas
et al., 2023; Venkata et al., 2016) indicate that once these obstacles are
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overcome, OSCs can be manufactured at a cost lower than one dollar
per peak Watt (Brabec et al., 2005).

The integration of machine learning (ML) before transferring to
industrial implementation is being extensively tested these days. For
instance, within the field of cheminformatics, it is of paramount impor-
tance in the design of new materials. Numerous studies have demon-
strated the potential of deep learning algorithms to analyze complex
chemical data, thereby accelerating the process of discovering, for ex-
ample, drugs (Dalmau & Alegre-Requena, 2024a), as well as identify-
ing promising compounds with improved properties (Lusci et al., 2013;
Sanosa et al., 2024). Some early studies (Hansen et al., 2013; Rupp
et al., 2012) laid the foundations for the application of ML models in
predicting molecular properties, highlighting their great strengths. Oth-
ers concentrated on examining chemical databases to identify potential
materials (Unterthiner et al., 2015; Wallach et al., 2015), whose focus
moved forward to the inclusion of PV features (Hachmann et al., 2011).

General advances in artificial intelligence (AI) and ML have demon-
strated great improvements on the performance, reliability, and effi-
ciency of PV. Please follow Table 1 to get the main insights of relevant
studies which have focused on PV data processing with ML. It is worth
highlighting some works, i.e. Serrano-Lujan et al. (2016) and Tang et al.
(2024), where short-term memory networks have been implemented for
timely evolving systems; data-intensive studies which identify influenc-
ing factors on the degradation of OSCs (Alsulami et al., 2024; Borazan,
2019; Zhang et al., 2017); and automated interpretable ML models that
aid in the discovery of high PCE materials (Lee, 2023; Moore et al.,
2022).

More recent works have significantly impacted the development of
OSCs, offering data-driven tools for predicting performance and improv-
ing stability. Liu et al. (2024) demonstrate that ML can model the re-
lationships between parameters, morphology, and long-term stability
of OSCs; Du et al. (2024) have identified electronic structure with ef-
fective bandgap as key predictors for environmental resilience; Hul3ner
et al. (2024) have introduced ML techniques to extract charge carrier
dynamics from J-V curves, permitting efficient characterization without
complex measurements; Zhao et al. (2022) applied ML to visualize and
optimize the influence on PCE of fabrication parameters in OSCs, high-
lighting the benefits for experimental design; Osterrieder et al. (2023)
further accelerated OSC optimization through an Al-driven autonomous
platform using Bayesian optimization and spectral data; finally, Lin et al.
(2025) addressed long-term stability by designing new copolymers that,
when coupled with predictive modeling, showed enhanced durability.
In sight of all these developments, a clear horizon for this work is to
exploit ML in capturing the temporal degradation behavior of OSCs.

In particular, we explore different ML models to encode the
PCE performance of polymeric OSCs based on multilayer ITO/PE-
DOT:PSS/P3HT:PCBM/Al (for definitions please check Sections 2.2 and
5). To that aim, we have used the ROBERT' program (Dalmau & Alegre-
Requena, 2024b), which automates data curation, screening of ML mod-
els, assessment of predictive ability, and feature analysis (for repro-
ducibility details, see Appendix C). Our dataset® consists of PCE mea-
surements acquired for 180 days, of 5 OSC devices, resulting in a
database with 166 entries. Although these devices are encapsulated,
the database contains up to seven descriptors, some related to envi-
ronmental conditions (temperature, hummidity, dew point and pres-
sure) to inspect possible dependencies on their future performance and
some others related to their composition and manufacturing (quanti-
ties of: solvent in the high transportation layer (HTL), i.e., PEDOT:PSS;
P3HT, PCBM; and volume ratio of P3HT:PCBM). The accuracy metrics
demonstrate the validity of these models to learn and represent the
temporal behavior of our OSCs, with determination coefficient up to
R2=0.96, and low root mean squared error (RMSE), sum of squared

! https://github.com//jvalegre/robert
2 https://github.com/POLI-NANO/OSCs
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error (SSE) and mean absolute error (MAE). Additionally, traditional
Bayesian regression models sustained by non-linear least squares (LS)
have been introduced to confirm the advantages of the ML-automated
protocols against these classical approaches. While these conventional
methodologies (Bozorg et al., 2020; Owolabi et al., 2017; Wolf & Benda,
2013) may yield satisfactory results in univariate regression domains,
our approach demonstrates that computational learning modeling offers
a much broader and comprehensive solution compared to those based
on classical statistical models. ML models show increased robustness
and reliability for:

¢ Generating multivariate models to capture PCE behavior over time
while ensuring the interpretability of variable influences.

Learning from an entire dataset of multiple OSCs, not solely from a
specific OSC device as in classical regression.

Screening new OSC devices not used during the learning phase,
thereby predicting its behavior, as an unknown device.

Detecting optimal variables to fabricate the OSCs with optimal PCE
and/or its stability over time.

In summary, the key contributions of this research are as follows:

1. Assessment of optimal ML models that learn the PCE behav-
ior over time for polymer-based OSC devices with ITO/PE-
DOT:PSS/P3HT:PCBM/AI structures.

2. Comparative benchmarking among different ML models and classical
statistical regression approaches.

3. Identification of an optimal ML model capable of predicting the PCE
behavior of unseen OSC devices.

4. Feature analysis to establish the influence of variables on the perfor-
mance of the OSC devices.

5. Reproducibility and transparency of the obtained ML models using
a standardized framework for command line replication.

The rest of the paper is organized as follows: Section 2 describes the spe-
cific OSCs manufactured in our laboratory, their electrical parameters,
and the periodic measurements that comprise the database used by the
ML methods. Subsequently, these methods are defined, starting from
a preliminary scope of regression problems, along with the software
framework that enables their benchmarking and, consequently, the ex-
traction of models with optimal hyper-parameters. Then, Section 3 out-
lines the experiments and results. Finally, Section 4 draws conclusions
from this work.

2. Materials and methods
2.1. Organic solar cells

The OSCs characterized in this work are manufactured through spin-
coating technique, which involves the deposition of overlapped poly-
meric thin films. Polymers are deposited in solution, then a process
of rotation followed by heating aids in removing the solvent, hence
forming the layer. The structure of the devices was as follows: ITO/PE-
DOT:PSS/P3HT:PCBM/Al, where each layer refers to:

e ITO: Indium tin oxide.

e PEDOT:PSS: poly(3,4-ethylenedioxythiophene) polystyrene sul-
fonate.

P3HT:PCBM: (poli(3-hexiltiofeno-2,5-diil):[6,6]-phenyl-C61-butyric
acid methyl ester.

o Al: Aluminium.

As a substrate, a glass with a 60 nm thick semi-transparent ITO layer
was used. The substrates were placed in the spinner with the ITO layer
facing upwards so that the thin layers could be deposited on it. The first
layer was the PEDOT:PSS film. It was deposited at room temperature at a
rotation speed of 6000 rpm for 60 s. The remaining solvent was removed
by heating at 150 °C for 10 min. Once the first layer was deposited, the
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Table 1
Literature review.
Ref. Topic Material Method(s) Data Application Contribution
Eibeck et al. (2021) Efficiency Organic PV SVR, RF, GB, Experimental Performance ML comparison for predicting
prediction ANN, KNN prediction PCE
Serrano-Lujan et al. (2016) Prediction with General PV LSTM + GRU + Meteorological Forecasting Prediction via ensemble deep
ensemble Attention learning methods
learning
Toledo et al. (2019) Parameter PV panels ANN Simulated Modeling Improved accuracy for PV
estimation parameter estimation
Lopez et al. (2016) Efficiency Organic PV ANN, RF Experimental Efficiency ML comparison for performance
prediction Estimation prediction
Moore et al. (2022) Energy levels Organic PV Transfer Material Material Transfer learning for predicting
prediction Learning datasets Discovery efficient HOMO/LUMO
Malhotra et al. (2021) Defect PV panels CNN + transfer Images Fault Detection Transfer-based detection with
classification learning pretrained networks
Ryu et al. (2019) ML model General PV XGBoost, SVM, Real-field Performance Systematic comparison of ML
comparison ANN Evaluation models
Sun et al. (2019) Fault prediction General PV SVM, ANN Real-field Fault Detection Early fault prediction using
statistical features
Miyake and Saeki (2021) ML screening Perovskite PV RF, KNN, SVM Laboratory Materials ML for discovering stable
Discovery compositions
Mahmood et al. (2022) Optimizing ML Organic PV AutoML Benchmark Forecasting Automated pipeline for model
pipelines selection
Mahmood and Wang (2021) Parameter Organic PV Hybrid DL + Simulated + Modeling Hybrid optimization for
identification evolutionary experimental parameter extraction
algorithm
Ju et al. (2018) Material Perovskite PV XGBoost, DNN Material Materials Prediction of perovskite
properties datasets Discovery bandgaps using ML
Mahmood et al. (2023) Bandgap Organic PV SVR + GSA Material Materials SVR tuned via metaheuristics for
prediction optimization datasets Discovery prediction
Jobayer et al. (2023) Overview of ML Various PV Multiple ML Literature Forecasting, Overview of ML for PV prediction
models modeling and modeling
Tang et al. (2024) Dual-attention PV panels GRU + Real-field Forecasting Robust predicting model for
forecasting Attention + weather with transfer learning
clustering
Nguyen and Ishikawa (2023) Output General PV XGBoost, DNN Simulated Forecasting High-accuracy output estimation
prediction
Dwivedi et al. (2024) Defects PV panels Deep CNN + Images Fault Detection Cross-system fault detection with
detection attention attention DL
Yildirim et al. (2023) Material Perovskite PV AutoML Material Materials AutoML for HSL discovery in
screening datasets Discovery perovskites
Mammeri et al. (2023) Feature Perovskite PV RF, SVM Experimental Efficiency Multi-feature analysis for optimal
prediction Estimation PV design
Lee (2023) Ternary OSC Organic PV Interpretable ML Experimental Efficiency Accurate prediction using
efficiency + descriptors Estimation molecular descriptors
Zhang et al. (2022) Degradation and Perovskite PV Statistical + ML Stability dataset Stability Data-driven insight into
stability analysis Analysis degradation trends
Alsulami et al. (2024) Large dataset Perovskite PV ML model Literature + Stability Stability trends across multiple
stability (unspecified) experimental Analysis studies
Wolf and Benda (2013) Parameter General PV Statistical + Experimental Parameter Combined analytical/statistical
extraction analytical Estimation estimation
models
Zhang et al. (2017) Stability Organic PV Statistical Experimental Stability Indoor and outdoor stability with
Analysis Analysis environmental impact on
degradation
Borazan (2019) Lifetime Study Organic PV Statistical + Laboratory Lifetime Lifetime estimation under
of Photovoltaic analytical Prediction different stress conditions.
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Fig. 1. Block diagram of the acquisition system used to acquire the OSC database.

active layer composed by the P3HT:PCBM polymer blend was applied.
This was done at 300 rpm for 3 min. It was then dried at 80°C for 1 h.
The final layer deposited on the devices was an aluminium film. Alu-
minium was not deposited using the spin-coating technique but rather
by metal evaporation in a vacuum chamber. The equipment consists of
a high vacuum chamber, two vacuum pumps, one of which is a high
vacuum pump, and a power supply to provide the necessary current
to evaporate the aluminium. Once the samples were placed inside the
chamber, vacuum was achieved, reaching pressures of 10~® mbar. When
this pressure was reached, the aluminium evaporated by Joule effect.

2.2. OSC Database

As initially mentioned in Section 1, our dataset consists of PCE mea-
surements of 5 OSC devices, where up to 7 variables were registered for
more than 180 days (accesible on Github ° and Appendix B). Electri-
cal parameters ( current-density vs voltage, J-V curves) of these OSCs
were acquired along with climate conditions. The acquisition process
comprises a Keithley-2400 equipment that acts as source generator for
the voltage sweep as well as recorder of the generated PV current. The
J-V curves were measured under light conditions; i.e. 100 mW/cm?, Air
Mass (AM) 1.5 Global (G), and 25 °C, as generated by a solar simulator
Newport xenon arc lamp and an AM 1.5G filter. The electrical char-
acterization was completed by determining the characteristic electrical
parameters, including the short-circuit current density (J,.), the open-
circuit voltage (V,.), the maximum power point (Pmpp), the fill factor
(FF), and the PCE. Obtaining these parameters allowed to extract the
PCE value as follows:

Pupp  Jo V. FF

PCE = — IS¢ o’ (€))
Pine G
being P,,,. the incident solar power on the OSCs, which derives from the

incident irradiance of the solar simulator, G.

The block diagram of the equipment for the acquisition system is pre-
sented in Fig. 1. This permitted obtaining a database with 166 entries.
The variables and their units are presented in Table 2. Notice that, in
order to get further insights on the future performance of the OSCs, en-
vironmental conditions at laboratory have also been measured, despite
the devices were encapsulated.

As an example, Fig. 2 presents an OSC device contained in the
database, for which its current density (J) data have been periodically
acquired against voltage (V) over time. Specifically, Fig. 2(a) displays
the voltage range on the X-axis from 0 to 0.5V, while Fig. 2(b) adjusts
the scale to show the range from 0 to 0.25V, allowing for a clearer ob-
servation of the evolution of the J-V curve when days go by (different
colors of the legend). The degradation principles of these organic devices
suggest that over time, these curves, from which maximum power and
energy conversion efficiency are obtained, should consistently decay.

Likewise, Fig. 3 compares the temporal evolution of three different
OSCs in terms of their normalized PCE values, ranging from O to 1, for
more than 180 days. Please note that normalization is used for visual-
ization purposes, as typically used in this field (Wiirfel & Wiirfel, 2016)
when analyzing PCE decay. Once again, it is confirmed that time leads
to the degradation of the device’s conversion efficiency. However, it also

3 https://github.com/POLI-NANO/OSCs

Table 2

Detail of the variables in the dataset: Manufacturing
variables and environmental conditions at laboratory. It
contains 166 entries.

Variables Values [min-max] std
PCE [0.27-1.32] % 0.25
quantity DS HTL [250-1000] pl 0.19
P3HT [1-1.2] mg 0.07
PCBM [0.8-1]1 mg 0.07
ratio P3HT:PCBM [1-1.25] - 0.09
Temperature [12-23] °C 2.81
Hummidity [33-88] % 17.78
Dew point [3-19] °C 3.99
Pressure [997-1022] hPa 7.25
Time [0-181] days 60.21

emerges that differences in the fabrication of the OSCs, as well as the en-
vironmental conditions during their measuring, may influence the trend
followed by the PCE over time.

2.3. Regression problem with classical approaches

This study aims to automatically model the degradative behavior ex-
hibited by manufactured OSCs using ML approaches, which is a regres-
sion problem. In order to establish further comparisons that highlight
and reinforce the abilities of ML-based protocols, a preliminary step was
carried out to present regression fitting using traditional LS-supported
Bayesian methods.

Regression is a method for estimating the relationship between a re-
sponse or output variable and one or more predictor or input variables.
Linear and non-linear regression serve as estimators of values between
observed data points. From that starting point, a regression model re-
lates response data to predictor data through one or more coefficients.
Then a parametric fitting algorithm is needed to calculate some model
coefficients from a set of input data. Therefore, the parametric algorithm
estimates deterministic components, whereas random components are
typically described as the error. Considering the model as a coefficient
function of the independent variable, the error encodes random fluctu-
ations around a Gaussian probability distribution. In many scopes, the
goal is to minimize that error, classically addressed by means of LS fit-
ting approaches, such as: linear mean LS, weighted LS, robust LS, non-
linear LS, etc.

y=fX.p)+e (2)

where y is the output vector data of nx1, corresponding to the input
data in X of nxm, after being applied f as a non-linear function of
the coefficient vector  (mx1), being ¢ the vector of unknown errors of
nx1. Afterwords, the SSE is minimized, understood as the residual sum
of squares, given a set of n data values, the residual value of the i-th
value r; is calculated as:

"izyi_JA’i 3

where y; represents the i-th observed value and §; represents the i-th
estimated value, and accordingly:

n n
SSE=Y rl= Y- @
i=1 i=1
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Fig. 2. Evolution of current density (J) vs. voltage (V) over time (days) for the OSC Cel/2. (a) Curve J-V with V €[0-0.7] V. (b) Same curve J-V with V €[0-0.25] V.
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Fig. 3. Evolution of the normalized PCE over time for three different OSCs.

Subsequently, the algorithm proceeds iteratively calculating the coef-
ficients from an initial seed. Sometimes non-linear models trust on
heuristic schemes to calculate initial values. For others models, coef-
ficients randomly initialized in ranges from [0-1]. Then the response
value is given as § = f(X, f), computed using the jacobian matrix of
f(X,p), as the matrix that contains the partial derivatives with re-
spect to the coefficients of g. Finally, the adjustment of the coefficients
for the next iteration lies on some non-linear LS algorithms, such as
Levenberg-Marquardt, Gradient descent or Gauss-Newton (Holland &
Welsch, 1977). Whenever the fitting meets the specified convergence
criteria, the final solution is assumed as valid.

After observing in Section 2.2 the behavior of PCE over time for the
various OSCs contained in our database, it suggests that the LS regres-
sion fitting models yielding the best results are those with non-linear
characterization. Table 3 displays the selected models along with their
expressions as a function of time, dependent on the adjustment coeffi-
cients. It should be noted that the capability of these classical models
lies solely in modeling the univariate behavior of the time effect on the

Table 3

LS Bayesian regression fitting models to estimate PCE,
denoted as f(x), where x represents time by means of
parametric models.

Parametric model Coefficient expression of f(x)

expl aeb

exp2 aeb™ + cedx

gaussl a, e-lx=b)/e 1

gauss2 ale—[(x—b.)/m]2 + aze—[(»\'—lh)/cglz
poly3 PiX> + pxX? + pix +py

PCE values. While it is possible to explore other LS regression fitting
in the multivariate domain, they only allow for establishing linear rela-
tionships, which do not adequately capture the behavior of our devices.

2.4. ML Framework

In contrast to the previous classical approaches, ML moves forward
to produce non-parametric regression models that adjust more complex
behaviors. In this work, we exploit the advantages of a software frame-
work developed under Python, ROBERT* (Dalmau & Alegre-Requena,
2024b) (v1.0.6; see Appendix C for reproducibility details), that facil-
itates hyper-optimization and benchmarking over well-recognized ML
regression models by single command line instruction. This automated
framework consists of the following modules (for further details please
check the online documentation (Dalmau and Alegre Requena, 2025)):

e CURATE (data curation): It processes the input dataset in order to
filter correlated descriptors, noise, duplicates, as well as to identify
and to convert categorical variables into one-hot descriptors.

GENERATE (model selection): It iterates through multiple hyper-
optimized models from scikit-learn (Pedregosa et al., 2011), includ-
ing Random Forest (RF) (Breiman, 2001), Multivariate Linear Model
(MVL) (Draper & Smith, 1998), Gradient Boosting (GB) (Friedman,
2001), Gaussian Process (GP) (Rasmussen & Williams, 2005), Ad-
aBoost Regressor (AdaB) (Freund & Schapire, 1997), MLP Regressor
Neural Network (NN) (Hornik et al., 1989), and Voting Regressor
(VR) (Rokach, 2010). The algorithms are combined with different

4 https://github.com//jvalegre/robert
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training-validation split sizes, from 60-40% to 90-10 % using ran-
dom data splitting. For each combination of algorithm and training
size, two models are generated: one with all the descriptors and an-
other with only the most important variables detected by permuta-
tion feature importance (PFI) analysis. Among all the possibilities,
the program selects two optimal models based on RMSE error.

e PREDICT (external predictions selection): the framework is able to
predict new target values. Moreover, it provides feature importances
using SHapley Additive exPlanations (SHAP) and Permutance Fea-
ture Importance (PFI) analysis, and outlier detection.

e VERIFY (assesing predictive ability): It assesses the predictive abil-
ity of the models, considering tests such as y-shuffle, y-mean, k-fold
cross-validation, and prediction with one-hot encoding.

e REPORT (generation of PDF reports): With the aim to enhance re-
producibility and transparency, this module offers a detailed report
containing comprehensive information about the ML models utilized
and replication instructions through command line executions.

3. Results

This section introduces the results obtained using both classical LS
regression fitting and ML models to estimate the temporal behavior of
our OSCs. The selected error metrics (de Azevedo Takara et al., 2024;
Khan & Choi, 2025) for analysis are briefly presented below:

e Coefficient of determination R?: It quantifies how well the inde-
pendent variables explain the variability of the dependent variable.
Higher values indicate that the model fits the data well and captures
a larger proportion of the variability in the dependent variable.

SSE
S,

tot

R =1-

)

where SSE was defined in (4) and SS,,, is the total sum of squares.

R2

60 90 120 150 180
time (days)

(a)

SSE

30 60

9 120 150 180
t?me (days%

(c)
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e RMSE: It provides a measure of the average magnitude of the errors
made by the model in its predictions. Minimizing this error is often
a goal when training regression models in ML.

RMSE = (6)

where n is the number of samples, y; is the real observed value and
$; is the predicted value.

e MAE: Another common objective error that measures the average
magnitude of the errors between the predicted values and the actual
values of the target variable. Unlike RMSE, which penalizes large er-
rors more heavily, MAE treats all errors equally by taking the average
of their absolute values.

n
1
MAE = — =P 7
n2|y, 3l %)

i=1
3.1. Classical LS regression fitting results

Fig. 4 presents the accuracy metrics of the five Bayesian regression
models introduced in Table 3 to estimate the performance of PCE over
180 days, for each of the OSCs available in the database (Table 2). It
is worth noting that these results correspond to the mean values, along
with the standard deviation for each OSC. In general terms, it can be
observed that these models tend to perform slightly better over short
time periods compared to the longer experiments.

The maximum errors for all temporal fittings are bounded to val-
ues ~0.06. According to the results of Fig. 4, it is observed that on aver-
age, the gauss2 model, consisting of two Gaussian terms, is the one that
best estimates the performance of the OSCs in terms of PCE over time.
However, it should be noted that for a 30-day fit, this model requires
more points to achieve a valid R?. It is worth mentioning that these
methods cannot characterize the behavior of all devices contained in

RMSE

90 120
time (days)

(b)

MAE

30 60 90 120 150 180
time (days)

(d)

Fig. 4. Accuracy metrics of the LS-supported Bayesian regression fitting over time. Five different models are evaluated: expl W, exp2 W, gaussl W, gauss2 A,
poly3 W (a) Coefficient of determination, R?. (b) Root mean squared error, RMSE. (c) Sum of squared errors, SSE. (d) Mean absolute error, MAE.
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our database in a global manner, and the results obtained reflect solely
the mean performance of fitting for individual OSCs.

3.1.1. PCE Prediction with LS

Once preliminary fittings have been made with traditional LS re-
gression methods, it has been found that the best fitting corresponds to
a double-term Gaussian function. Now we analyze the robustness of this
method to predict the behavior of PCE against the temporal variable.
For this purpose, four regression fittings have been obtained with PCE
data acquired up to: 30, 60, 90, and 120 days, respectively. Then the
behavior of PCE at 180 days has been predicted for each one (Fig. 5
and Table 4). It can be confirmed that only the fitting with data up to
120 days is able to predict reliably future PCE values. This result demon-
strates that even the best parametric LS fitting regression model requires
more than half of the temporal data to reliably model the PCE evolution
at future time values.

3.2. ML Regression results
In this section, we generate ML models to study the temporal behav-

ior of PCE. Notice that, unlike the previous LS-based regression fittings
presented in Section 3.1, these ML models allow us to characterize the
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Fig. 5. PCE predition over time with the best LS-supported Bayesian regression
fitting model (gauss2). Four temporal datasets are used to compute the fittings:
30 days —o—; 60 days —o—; 90 days —o— and 120 days —o—.

Table 4
Accuracy metrics of the best LS-supported Bayesian regression fit-
ting model (gauss2) to predict PCE over time, presented in Fig. 5.

Fitting data Prediction RMSE SSE MAE
30 days 60 days 0.0516 0.0213 0.0277
90 days 0.1141 0.1302 0.0680
120 days 0.1872 0.4905 0.1339
150 days 0.2224 0.8405 0.1705
180 days 0.2442 1.3117 0.1979
60 days 90 days 0.0454 0.0206 0.0220
120 days 0.1083 0.1641 0.0685
150 days 0.1511 0.3879 0.1046
180 days 0.1911 0.8038 0.1445
90 days 120 days 0.0150 0.0032 0.0103
150 days 0.0160 0.0043 0.0119
180 days 0.0190 0.0079 0.0118
120 days 150 days 0.0158 0.0042 0.0127
180 days 0.0138 0.0038 0.0105
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Table 5
Accuracy metrics of the ML regression models computed with training data up
to 180 days. Run on an Apple M1 8-core 3,2 Ghz; Python 3.10.12.

Training data ML model R? RMSE SSE MAE time
(s)

180 days GB-90-10 0.96 0.0640 0.0595 0.0520 8.01
GB-80-20 0.96 0.0720 0.0600 0.0560 7.73
GB-70-30 0.94 0.0840 0.0672 0.0650 7.70
GB-60-40 0.95 0.0700 0.0431 0.0500 7.77
NN-90-10 0.66 0.1400 0.3732 0.1100 23.46
NN-80-20 0.76 0.1100 0.1138 0.0670 22.99
NN-70-30 0.60 0.1600 0.3555 0.1200 17.70
NN-60-40 0.43 0.2500 0.7265 0.1800 15.65
MVL-90-10 0.81 0.1000 0.2929 0.0810 4.06
MVL-80-20 0.81 0.1000 0.2783 0.0800 4.07
MVL-70-30 0.74 0.1400 0.2696 0.1000 4.10
MVL-60-40 0.74 0.1300 0.2802 0.0920 4.09
RF-90-10 0.96 0.0480 0.0246 0.0390 10.01
RF-80-20 0.97 0.0520 0.0309 0.0370 10.66
RF-70-30 0.94 0.0670 0.0398 0.0460 10.65
RF-60-40 0.93 0.0850 0.0644 0.0580 10.39

performance of all the OSC devices under a single model, while also
using the multiple variables in the dataset. These include manufactur-
ing parameters and environmental conditions at each measurement. To
comparatively assess the ML models, Table 5 presents detailed accuracy
results for the algorithms GB, NN, MVL, and RF, with training data up to
180 days. Please note that all these models have PFI enabled, so that the
most important features are considered. For further details about these
features see Section 3.2.2 and Appendix C.

The nomenclature for the models is: ALGORITHM-TRAINING-VALID
(e.g. RF-90-10). Results with different training-validation ratios are pre-
sented: from 90-10 % to 60-40 %. In this study, the optimal ML models
used RF algorithms with a 90-10 training-validation partitioning. It can
be observed that, in general, all MAE and RMSE values are bounded
within ranges ~[0.02-0.03], for training data of 120 days onwards.

The most robust model is highlighted in bold, considering the overall
performance across all presented metrics, with priority given to the R?
value. Please note that the supplementary material (Appendix A) con-
tains these same metrics for further inspection of models obtained with
other temporal ranges. Likewise, the detailed parameters for each model
can be consulted in Appendix C. It is worth noting that errors of the
ML methods are clearly bounded, regardless they operate on a multi-
variate database, in contrast to univariate Bayesian fitting presented in
Section 3.1.

3.2.1. PCE Prediction with ML

After comparatively evaluating the performance of ML models, this
section validates their ability to predict the temporal behavior of the
PCE for an OSC device never seen by the models. Firstly, the models
are trained and validated without data of Cell4. Standing out above the
others are the GB-90-10 and RF-90-10 models. In line with previous
results (Table 5), and thus considering its robustness to model the en-
tire dataset, RF-90-10 has been selected to get predictive inferences up
to 180 days for the unseen OSC Cell4. Fig. 6 provides such results. In
particular, Fig. 6(a) presents the results of the model when the dataset
is splitted into traning and validation, at 90 %-10% (blue and yellow
points), whereas Fig. 6(b) shows the prediction for Cel/l4 when its data
are used as external test.

Next, Fig. 7 presents validation tests. Fig. 7(a) shows the RMSE er-
ror of the model compared to those of the tests: y-mean, y-shuffle and
onehot. Fig. 7(b) produces a 5-fold cross-validation test (Kohavi, 1995),
with satisfactory results. In consequence, neither data leakage nor over-
fitting is evidenced.

Finally, Fig. 8 compares the temporal evolution of the PCE for Cell4
with the predicted data obtained by the model.
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Fig. 6. Results of the best ML model, RF-90-10: (a) training-validation without data of Cell4 (R*=0.96, MAE=0.05, RMSE =0.071); (b) prediction of Cell4 as

external test (R2=0.88, MAE=0.015, RMSE=0.021).
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Fig. 7. Validation of the best ML model, RF-90-10: (a) RMSE values for validation tests y-mean, y-shuffle and onehot; (b) 5-fold cross-validation test (R*=0.89,

MAE =0.06, RMSE =0.09).
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Fig. 8. PCE prediction over time with the best ML regression model (RF-90-10,
blue) for an OSC not seen during the training-validation process (Cel/4, black).

3.2.2. Feature analysis
Considering the results obtained in the previous section, it is worth-
while to study the top-performing ML model that characterizes the be-

havior of OSCs (i.e. RF-90-10). ML models trained with a limited number
of data points are unable to characterize and predict with sufficient ac-
curacy. For this reason, we focused on analyzing the complete dataset,
with measures up to 180 days. In this regard, PFI and SHAP analyses are
presented below, by means of Figs. 9 and 10, respectively. PFI evalu-
ates the significance of individual features in a ML model by measuring
the increase in the model’s prediction error after permuting the val-
ues of a specific feature. The resulting increase in error indicates the
dependency on that feature (Breiman, 2001; Fisher et al., 2019). Be-
sides, SHAP permits interpreting individual predictions of ML models
by computing the contribution of each feature to the model’s as an ad-
ditive feature attribution method (Lundberg & Lee, 2017), i.e., it per-
mits showing how much a feature biases the model’s prediction up or
down.

Then Fig. 9 presents the influence of the most relevant feature for
the model, after applying PFI filtering, that is, removing variables with
low effect on the R2. It is confirmed that the amount of solvent (PE-
DOT:PSS) in the HTL layer has the most significant influence. Likewise,
the P3HT:PCBM ratio also demonstrates certain relevance. Additionally,
dependencies with the value of PCBM are also observed, since it con-
straints the P3HT:PCBM ratio, given its non-linear influence in the de-
nominator.

As for the environmental conditions, it is known that low humidity
proves to be beneficial for these OSCs, which in our geographical lo-
cation is normally correlated with high temperatures and atmospheric
pressures. In a similar manner it acts the dew point, which directly
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Fig. 9. PFI results for the best ML model generated with data up to 180 days.
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Fig. 10. SHAP results for the best ML model generated with data up to 180
days.

correlates with humidity. Nonetheless, the device encapsulation demon-
strates that the effect of these variables is minimized, as PFI filtering
proves that they are not relevant enough to influence substantially the
model.

Regarding the SHAP analysis, Fig. 10 validates the previous insights:
high values of the amount of solvent PEDOT:PSS in the HTL layer and
high ratios of P3HT:PCBM contribute positively to get higher and stable
PCE values. Besides this, the effect of the PCBM value on the higher
P3HT:PCBM ratio is again confirmed.

Overall, the importance of the quantity of PEDOT:PSS in the HTL
layer has been demonstrated as it plays an essential role in the multi-
layer structure of the OSCs. It confirms its relevance as the second layer
to cover sufficiently the substrate and thus increasing the PCE and its
stability. Moreover, the ratio P3HT:PCBM also demonstrates its positive
role in dealing as charge carrier in the HTL layer and therefore assuring
higher PCE values.

4. Discussion and conclusions

This paper has presented the application of optimal ML frameworks
to characterize the degradation behavior, in terms of PCE, of OSCs
with multilayer structure ITO/PEDOT:PSS/P3HT:PCBM/Al. A dataset
with 166 entries entries was created, containing PCE values of various
OSC devices measured over 180 days. This dataset was supplemented
with seven variables describing environmental conditions of the exper-
iments and manufacturing parameters of the devices. Through hyper-
optimization of a set of ML models we have presented an accuracy anal-
ysis of different methods, which were fed with OSC data periodized into
sets from 30 to 180 days. The benchmarking has confirmed the validity
of models like RF or GB to confer R? values over 0.90, reaching in some
extents R2~0.96-0.97 and error metrics (RMSE, SSE and MAE) signif-
icantly low when long term data is used for training. To reinforce the
suitability of these ML models, classical LS regression fitting methods
have been compared. These proved not to be suitable for a multivari-
able dataset like ours, especially when dealing with long term data of
the OSCs. Consequently, their ability to predict PCE values is highly
unreliable.
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ML models proved to offer high feasibility to predict the behavior
of unknown OSCs. Feature analysis suggests that the most influential
variable is the solvent in the HTL layer, i.e., the amount of PEDOT:PSS.
This is explained as the multilayer structure of the OSCs needs a mini-
mum value of PEDOT:PSS to ensure a layer that completely covers the
substrate. Moreover, the ratio P3HT:PCBM also exhibits significant im-
portance, being higher values representative of greater impact on the
model. Finally, it has been observed that variables such as temperature,
humidity, dew point and pressure have lesser impact on the models,
explained by the encapsulation made to the OSCs during their manufac-
turing.

As the main limitations and challenges faced during this implemen-
tation of ML with OSCs, we observed that the accuracy of the measure-
ment equipments is a key aspect so as to have valid data to feed the
models. Valid and wide ranges for the data are highly needed, accord-
ing to feasible OSC manufacturing process. Otherwise, models might
predict unfeasible OSCs, whose manufacture is not possible.

5. Glossary

e Al: Aluminium.

¢ ITO: Indium tin oxide.

e PEDOT:PSS: poly(3,4-ethylenedioxythiophene) polystyrene sul-
fonate.

e P3HT:PCBM: (poli(3-hexiltiofeno-2,5-diil):[6,6]-phenyl-C61-butyric
acid methyl ester.

e PEDOT:PSS: poly(3,4-ethylenedioxythiophene) polystyrene sul-
fonate.
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Appendix A. Extended accuracy metrics of ML models
This section comprises extended accuracy metrics of the ML models used in this work, when the temporal scope of the training-validation data

is varied: 30, 60, 90, 120 and 150 days, respectively. In particular, the accuracy study of the best ML model (RF-90-10) over time, is presented in
Fig. A.1 (Tables A.1-A.5).
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Fig. A.1. Accuracy of the best ML regression models over time: 30 days RF-60-40 [ll; 60 days RF-90-10 l; 90 days RF-90-10 l; 120 days RF-90-10 ; 150 days
RF-90-10 M and 180 days RB-90-10 . (a) Coefficient of determination, R2. (b) Root mean squared error, RMSE. (¢) Sum of squared errors, SSE. (d) Mean absolute
error, MAE.

Table A.1
Accuracy metrics of the ML regression models computed with training data up to 30
days.
Training data ML model R? RMSE SSE MAE
30 days GB-80-20 0.86 0.140 0.0647 0.1200
GB-70-30 0.73 0.140 0.0622 0.1200
GB-60-40 0.84 0.160 0.1103 0.1500
NN-80-20 0.76 0.180 0.1655 0.1800
NN-70-30 0.51 0.170 0.0832 0.1600
NN-60-40 0.62 0.170 0.0931 0.1400
MVL-80-20 0.71 0.200 0.0984 0.1500
MVL-70-30 0.62 0.220 0.1006 0.1400
MVL-60-40 0.66 0.170 0.1067 0.1400
RF-80-20 0.86 0.130 0.0573 0.1000
RF-70-30 0.78 0.130 0.0558 0.1000
RF-60-40 0.89 0.120 0.0725 0.0950

10
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Table A.2
Accuracy metrics of the ML regression models computed with training data up to 60
days.
Training data ML model R? RMSE SSE MAE
60 days GB-90-10 0.85 0.1000 0.0155 0.0800
GB-80-20 0.76 0.1500 0.0433 0.1300
GB-70-30 0.84 0.1500 0.0597 0.1300
GB-60-40 0.78 0.1700 0.1275 0.1500
NN-90-10 0.89 0.1300 0.1239 0.1000
NN-80-20 0.86 0.1700 0.1677 0.1500
NN-70-30 0.88 0.1500 0.0506 0.1300
NN-60-40 0.79 0.1600 0.0677 0.1400
MVL-90-10 0.71 0.1500 0.1059 0.1300
MVL-80-20 0.80 0.1700 0.1120 0.1500
MVL-70-30 0.63 0.1700 0.1117 0.1500
MVL-60-40 0.61 0.1900 0.1290 0.1500
RF-90-10 0.98 0.1000 0.0702 0.0850
RF-80-20 0.92 0.1400 0.0832 0.1300
RF-70-30 0.78 0.1600 0.0747 0.1400
RF-60-40 0.81 0.1300 0.0578 0.1000
Table A.3
Accuracy metrics of the ML regression models computed with training data up to 90
days.
Training data ML model R? RMSE SSE MAE
90 days GB-90-10 0.87 0.0730 0.0255 0.0660
GB-80-20 0.87 0.1100 0.0736 0.0860
GB-70-30 0.88 0.0940 0.0775 0.0770
GB-60-40 0.75 0.1400 0.0755 0.1100
NN-90-10 0.86 0.0790 0.0332 0.0630
NN-80-20 0.82 0.1300 0.1595 0.1200
NN-70-30 0.46 0.1900 0.1071 0.1700
NN-60-40 0.52 0.1900 0.1611 0.1500
MVL-90-10 0.61 0.1100 0.3161 0.1000
MVL-80-20 0.63 0.1700 0.1468 0.1400
MVL-70-30 0.54 0.1700 0.1378 0.1400
MVL-60-40 0.55 0.1800 0.1569 0.1500
RF-90-10 0.89 0.0750 0.0300 0.0670
RF-80-20 0.87 0.0940 0.0909 0.0700
RF-70-30 0.80 0.1000 0.0613 0.0780
RF-60-40 0.74 0.1400 0.0860 0.1100
Table A.4
Accuracy metrics of the ML models computed with training data up to 120 days.
Training data ML model R? RMSE SSE MAE
120 days GB-90-10 0.95 0.0670 0.0312 0.0540
GB-80-20 0.88 0.0700 0.0324 0.0510
GB-70-30 0.89 0.0810 0.0453 0.0620
GB-60-40 0.81 0.1300 0.1447 0.1100
NN-90-10 0.88 0.0600 0.2140 0.0450
NN-80-20 0.83 0.0890 0.0576 0.0660
NN-70-30 0.71 0.1300 0.0767 0.0960
NN-60-40 0.59 0.1700 0.1743 0.1300
MVL-90-10 0.70 0.0990 0.1729 0.0850
MVL-80-20 0.65 0.1400 0.1820 0.1100
MVL-70-30 0.60 0.1600 0.2311 0.1400
MVL-60-40 0.51 0.1800 0.2370 0.1500
RF-90-10 0.98 0.0300 0.0507 0.0240
RF-80-20 0.88 0.0680 0.0651 0.0480
RF-70-30 0.86 0.0920 0.0609 0.0690
RF-60-40 0.84 0.1000 0.0574 0.0770
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Table A.5

Accuracy metrics of the ML regression models computed with training data up to 150

days.

Training data ML model R? RMSE SSE MAE
150 days GB-90-10 0.98 0.0300 0.0510 0.0230

GB-80-20 0.93 0.0660 0.0242 0.0420
GB-70-30 0.94 0.0730 0.0351 0.0580
GB-60-40 0.91 0.0820 0.0591 0.0640
NN-90-10 0.90 0.0580 0.0760 0.0540
NN-80-20 0.82 0.0110 0.1277 0.0630
NN-70-30 0.88 0.0960 0.0871 0.0740
NN-60-40 0.78 0.1200 0.1533 0.0910
MVL-90-10 0.84 0.0920 0.2113 0.0800
MVL-80-20 0.87 0.1100 0.2139 0.0840
MVL-70-30 0.88 0.1200 0.2163 0.0900
MVL-60-40 0.82 0.1100 0.2184 0.0910
RF-90-10 0.97 0.0290 0.0219 0.0210
RF-80-20 0.96 0.0510 0.0394 0.0324
RF-70-30 0.94 0.0780 0.0417 0.0570
RF-60-40 0.90 0.0930 0.1069 0.0943

Appendix B. OSC Database

Database in csv file consisting of 166 entries which includes up to seven variables regarding both the manufacturing process and environmental
conditions for more than 180 days (Table 2). PCE values of several polymeric OSCs with a multilayer structure ITO/PEDOT:PSS/P3HT:PCBM/Al

were measured.

In addition, to ensure reproducibility, another csv file provides a dataset without data of Cel/4. Finally, another csv file can be used to test the

predictive ability of the model to predict data of such cell (see Section 3.2.1.)

Appendix C. ROBERT Report

Detailed report obtained with ROBERT (v1.0.6) after modeling the entire database. Results and reproducibility details are contained in this file.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.eswa.2025.128890
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