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 a b s t r a c t

Photovoltaic (PV) energy plays a key role in addressing the growing global energy demand. Organic solar cells 
(OSCs) represent a promising alternative to silicon-based PVs due to their low cost, lightweight, and sustain-
able production. Despite achieving power conversion efficiencies (PCEs) over 20%, OSCs still face challenges 
in stability and efficiency. Recent advances in manufacturing, artificial intelligence and machine learning (ML) 
achieve optimized and screened OSCs for greater sustainability and commercial viability, thus potentially reduc-
ing costs while ensuring stable and long term performance. This work presents optimal ML models to represent 
the temporal degradation on the PCE of polymeric OSCs with structure ITO/PEDOT:PSS/P3HT:PCBM/Al. First, 
we generated a database with 166 entries with measurements of 5 OSCs, and up to 7 variables regarding the 
manufacturing and environmental conditions for more than 180 days. Then, we relied on a software framework 
that provides a conglomeration of automated ML protocols that execute sequentially against our database by 
simply command-line interface. This easily permits hyper-optimizing the ML models through exhaustive bench-
marking so that optimal models are obtained. The accuracy for predicting PCE over time reaches values of the 
coefficient determination widely exceeding 0.90, whereas the root mean squared error, sum of squared error, 
and mean absolute error are significantly low. Additionally, we assessed the predictive ability of the models 
using an unseen OSC as an external set. For comparative purposes, classical Bayesian regression fitting are also 
presented, which only perform sufficiently for univariate cases of single OSCs.

1.  Introduction

Electricity consumption has evolved exponentially over the last three 
decades, increasing from a total estimate of 15277 to 29479 TWh be-
tween 2000 and 2023, respectively (Ritchie and Roser, 2024). One of the 
immediate consequences has been reflected in the price of this energy. 
Simultaneously, in the technological realm, there has been a notable 
shift in electricity generation towards renewable sources. Particularly, 
the maturity of conventional photovoltaic (PV) cells and the emergence 
of new organic and hybrid materials have made it possible to get signifi-
cant improvements in PV generation and its power conversion efficiency 
(PCE) (New Media Consortium, 2025). However, even though the global 
consumption of PV energy has increased from 1.08 to 1629.9 TWh be-
tween 2000 and 2023 (Ritchie and Roser, 2024), its generation still falls 
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short of meeting current demands. Hence, there are many challenges and 
open lines for improving the generation and efficiency of PV cells.

In this context, organic solar cells (OSCs) have emerged as a promis-
ing alternative to silicon-based solar cells since, amongst other ben-
efits, their production involves low-temperature manufacturing meth-
ods (Seo et al., 2015) and reduced carbon footprint. Their appeal also 
lies in the ease of processing, low cost, flexibility, and lightweight (Yeh 
& Yeh, 2013). Moreover, the evolution of their PCEs has been much 
superior to classical technologies and it has been on par with other con-
sidered emerging technologies, presenting efficiencies that exceed val-
ues of 20% (Ayub et al., 2023). Even though the commercialization of 
OSCs still faces various challenges, including stability and efficiency, 
some cost studies (Chiappafreddo & Gagliardi, 2010; Rodriguez-Mas 
et al., 2023; Venkata et al., 2016) indicate that once these obstacles are
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overcome, OSCs can be manufactured at a cost lower than one dollar 
per peak Watt (Brabec et al., 2005).

The integration of machine learning (ML) before transferring to
industrial implementation is being extensively tested these days. For 
instance, within the field of cheminformatics, it is of paramount impor-
tance in the design of new materials. Numerous studies have demon-
strated the potential of deep learning algorithms to analyze complex 
chemical data, thereby accelerating the process of discovering, for ex-
ample, drugs (Dalmau & Alegre-Requena, 2024a), as well as identify-
ing promising compounds with improved properties (Lusci et al., 2013; 
Sanosa et al., 2024). Some early studies (Hansen et al., 2013; Rupp 
et al., 2012) laid the foundations for the application of ML models in 
predicting molecular properties, highlighting their great strengths. Oth-
ers concentrated on examining chemical databases to identify potential 
materials (Unterthiner et al., 2015; Wallach et al., 2015), whose focus 
moved forward to the inclusion of PV features (Hachmann et al., 2011).

General advances in artificial intelligence (AI) and ML have demon-
strated great improvements on the performance, reliability, and effi-
ciency of PV. Please follow Table 1 to get the main insights of relevant 
studies which have focused on PV data processing with ML. It is worth 
highlighting some works, i.e. Serrano-Lujan et al. (2016) and Tang et al. 
(2024), where short-term memory networks have been implemented for 
timely evolving systems; data-intensive studies which identify influenc-
ing factors on the degradation of OSCs (Alsulami et al., 2024; Borazan, 
2019; Zhang et al., 2017); and automated interpretable ML models that 
aid in the discovery of high PCE materials (Lee, 2023; Moore et al., 
2022).

More recent works have significantly impacted the development of 
OSCs, offering data-driven tools for predicting performance and improv-
ing stability. Liu et al. (2024) demonstrate that ML can model the re-
lationships between parameters, morphology, and long-term stability 
of OSCs; Du et al. (2024) have identified electronic structure with ef-
fective bandgap as key predictors for environmental resilience; Hußner 
et al. (2024) have introduced ML techniques to extract charge carrier 
dynamics from J–V curves, permitting efficient characterization without 
complex measurements; Zhao et al. (2022) applied ML to visualize and 
optimize the influence on PCE of fabrication parameters in OSCs, high-
lighting the benefits for experimental design; Osterrieder et al. (2023) 
further accelerated OSC optimization through an AI-driven autonomous 
platform using Bayesian optimization and spectral data; finally, Lin et al. 
(2025) addressed long-term stability by designing new copolymers that, 
when coupled with predictive modeling, showed enhanced durability. 
In sight of all these developments, a clear horizon for this work is to 
exploit ML in capturing the temporal degradation behavior of OSCs.

In particular, we explore different ML models to encode the 
PCE performance of polymeric OSCs based on multilayer ITO/PE-
DOT:PSS/P3HT:PCBM/Al (for definitions please check Sections 2.2 and 
5). To that aim, we have used the ROBERT1 program (Dalmau & Alegre-
Requena, 2024b), which automates data curation, screening of ML mod-
els, assessment of predictive ability, and feature analysis (for repro-
ducibility details, see Appendix C). Our dataset2 consists of PCE mea-
surements acquired for 180 days, of 5 OSC devices, resulting in a 
database with 166 entries. Although these devices are encapsulated, 
the database contains up to seven descriptors, some related to envi-
ronmental conditions (temperature, hummidity, dew point and pres-
sure) to inspect possible dependencies on their future performance  and 
some others related to their composition and manufacturing (quanti-
ties of: solvent in the high transportation layer (HTL), i.e., PEDOT:PSS; 
P3HT, PCBM; and volume ratio of P3HT:PCBM). The accuracy metrics 
demonstrate the validity of these models to learn and represent the 
temporal behavior of our OSCs, with determination coefficient up to 
R2=0.96, and low root mean squared error (RMSE), sum of squared 

1 https://github.com//jvalegre/robert
2 https://github.com/POLI-NANO/OSCs

error (SSE) and mean absolute error (MAE). Additionally, traditional 
Bayesian regression models sustained by non-linear least squares (LS) 
have been introduced to confirm the advantages of the ML-automated 
protocols against these classical approaches. While these conventional 
methodologies (Bozorg et al., 2020; Owolabi et al., 2017; Wolf & Benda, 
2013) may yield satisfactory results in univariate regression domains, 
our approach demonstrates that computational learning modeling offers 
a much broader and comprehensive solution compared to those based 
on classical statistical models. ML models show increased robustness 
and reliability for:

• Generating multivariate models to capture PCE behavior over time 
while ensuring the interpretability of variable influences.

• Learning from an entire dataset of multiple OSCs, not solely from a 
specific OSC device as in classical regression.

• Screening new OSC devices not used during the learning phase, 
thereby predicting its behavior, as an unknown device.

• Detecting optimal variables to fabricate the OSCs with optimal PCE 
and/or its stability over time.

In summary, the key contributions of this research are as follows:

1. Assessment of optimal ML models that learn the PCE behav-
ior over time for polymer-based OSC devices with ITO/PE-
DOT:PSS/P3HT:PCBM/Al structures.

2. Comparative benchmarking among different ML models and classical 
statistical regression approaches.

3. Identification of an optimal ML model capable of predicting the PCE 
behavior of unseen OSC devices.

4. Feature analysis to establish the influence of variables on the perfor-
mance of the OSC devices.

5. Reproducibility and transparency of the obtained ML models using 
a standardized framework for command line replication.

The rest of the paper is organized as follows: Section 2 describes the spe-
cific OSCs manufactured in our laboratory, their electrical parameters, 
and the periodic measurements that comprise the database used by the 
ML methods. Subsequently, these methods are defined, starting from 
a preliminary scope of regression problems, along with the software 
framework that enables their benchmarking and, consequently, the ex-
traction of models with optimal hyper-parameters. Then, Section 3 out-
lines the experiments and results. Finally, Section 4 draws conclusions 
from this work.

2.  Materials and methods

2.1.  Organic solar cells

The OSCs characterized in this work are manufactured through spin-
coating technique, which involves the deposition of overlapped poly-
meric thin films. Polymers are deposited in solution, then a process 
of rotation followed by heating aids in removing the solvent, hence 
forming the layer. The structure of the devices was as follows: ITO/PE-
DOT:PSS/P3HT:PCBM/Al, where each layer refers to:

• ITO: Indium tin oxide.
• PEDOT:PSS: poly(3,4-ethylenedioxythiophene) polystyrene sul-
fonate.

• P3HT:PCBM: (poli(3-hexiltiofeno-2,5-diil):[6,6]-phenyl-C61-butyric 
acid methyl ester.

• Al: Aluminium.

As a substrate, a glass with a 60nm thick semi-transparent ITO layer 
was used. The substrates were placed in the spinner with the ITO layer 
facing upwards so that the thin layers could be deposited on it. The first 
layer was the PEDOT:PSS film. It was deposited at room temperature at a 
rotation speed of 6000 rpm for 60 s. The remaining solvent was removed 
by heating at 150 ◦C for 10min. Once the first layer was deposited, the 
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Table 1 
Literature review.
    Ref. Topic  Material Method(s) Data Application Contribution  
 Eibeck et al. (2021) Efficiency 

prediction
 Organic PV SVR, RF, GB, 

ANN, KNN
Experimental Performance 

prediction
ML comparison for predicting 
PCE

 

 Serrano-Lujan et al. (2016) Prediction with 
ensemble 
learning

 General PV LSTM + GRU + 
Attention

Meteorological Forecasting Prediction via ensemble deep 
learning methods

 

 Toledo et al. (2019) Parameter 
estimation

 PV panels ANN Simulated Modeling Improved accuracy for PV 
parameter estimation

 

 Lopez et al. (2016) Efficiency 
prediction

 Organic PV ANN, RF Experimental Efficiency 
Estimation

ML comparison for performance 
prediction

 

 Moore et al. (2022) Energy levels 
prediction

 Organic PV Transfer 
Learning

Material 
datasets

Material 
Discovery

Transfer learning for predicting 
efficient HOMO/LUMO

 

 Malhotra et al. (2021) Defect 
classification

 PV panels CNN + transfer 
learning

Images Fault Detection Transfer-based detection with 
pretrained networks

 

 Ryu et al. (2019) ML model 
comparison

 General PV XGBoost, SVM, 
ANN

Real-field Performance 
Evaluation

Systematic comparison of ML 
models

 

 Sun et al. (2019) Fault prediction  General PV SVM, ANN Real-field Fault Detection Early fault prediction using 
statistical features

 

 Miyake and Saeki (2021) ML screening  Perovskite PV RF, KNN, SVM Laboratory Materials 
Discovery

ML for discovering stable 
compositions

 

 Mahmood et al. (2022) Optimizing ML 
pipelines

 Organic PV AutoML Benchmark Forecasting Automated pipeline for model 
selection

 

 Mahmood and Wang (2021) Parameter 
identification

 Organic PV Hybrid DL + 
evolutionary 
algorithm

Simulated + 
experimental

Modeling Hybrid optimization for 
parameter extraction

 

 Ju et al. (2018) Material 
properties

 Perovskite PV XGBoost, DNN Material 
datasets

Materials 
Discovery

Prediction of perovskite 
bandgaps using ML

 

 Mahmood et al. (2023) Bandgap 
prediction

 Organic PV SVR + GSA 
optimization

Material 
datasets

Materials 
Discovery

SVR tuned via metaheuristics for 
prediction

 

 Jobayer et al. (2023) Overview of ML  Various PV Multiple ML 
models

Literature Forecasting, 
modeling

Overview of ML for PV prediction 
and modeling

 

 Tang et al. (2024) Dual-attention 
forecasting

 PV panels GRU + 
Attention + 
clustering

Real-field Forecasting Robust predicting model for 
weather with transfer learning

 

 Nguyen and Ishikawa (2023) Output 
prediction

 General PV XGBoost, DNN Simulated Forecasting High-accuracy output estimation  

 Dwivedi et al. (2024) Defects 
detection

 PV panels Deep CNN + 
attention

Images Fault Detection Cross-system fault detection with 
attention DL

 

 Yildirim et al. (2023) Material 
screening

 Perovskite PV AutoML Material 
datasets

Materials 
Discovery

AutoML for HSL discovery in 
perovskites

 

 Mammeri et al. (2023) Feature 
prediction

 Perovskite PV RF, SVM Experimental Efficiency 
Estimation

Multi-feature analysis for optimal 
PV design

 

 Lee (2023) Ternary OSC 
efficiency

 Organic PV Interpretable ML 
+ descriptors

Experimental Efficiency 
Estimation

Accurate prediction using 
molecular descriptors

 

 Zhang et al. (2022) Degradation and 
stability

 Perovskite PV Statistical + ML 
analysis

Stability dataset Stability 
Analysis

Data-driven insight into 
degradation trends

 

 Alsulami et al. (2024) Large dataset 
stability

 Perovskite PV ML model 
(unspecified)

Literature + 
experimental

Stability 
Analysis

Stability trends across multiple 
studies

 

 Wolf and Benda (2013) Parameter 
extraction

 General PV Statistical + 
analytical 
models

Experimental Parameter 
Estimation

Combined analytical/statistical 
estimation

 

 Zhang et al. (2017) Stability 
Analysis

 Organic PV Statistical Experimental Stability 
Analysis

Indoor and outdoor stability with 
environmental impact on 
degradation

 

 Borazan (2019) Lifetime Study 
of Photovoltaic 
Fibers

 Organic PV Statistical + 
analytical

Laboratory Lifetime 
Prediction

Lifetime estimation under 
different stress conditions.
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Fig. 1. Block diagram of the acquisition system used to acquire the OSC database.

active layer composed by the P3HT:PCBM polymer blend was applied. 
This was done at 300 rpm for 3min. It was then dried at 80 ◦C for 1h.

The final layer deposited on the devices was an aluminium film. Alu-
minium was not deposited using the spin-coating technique but rather 
by metal evaporation in a vacuum chamber. The equipment consists of 
a high vacuum chamber, two vacuum pumps, one of which is a high 
vacuum pump, and a power supply to provide the necessary current 
to evaporate the aluminium. Once the samples were placed inside the 
chamber, vacuum was achieved, reaching pressures of 10−6 mbar. When 
this pressure was reached, the aluminium evaporated by Joule effect.

2.2.  OSC Database

As initially mentioned in Section 1, our dataset consists of PCE mea-
surements of 5 OSC devices, where up to 7 variables were registered for 
more than 180 days (accesible on Github 3 and Appendix  B). Electri-
cal parameters ( current-density vs voltage, J-V curves) of these OSCs 
were acquired along with climate conditions. The acquisition process 
comprises a Keithley-2400 equipment that acts as source generator for 
the voltage sweep as well as recorder of the generated PV current. The 
J-V curves were measured under light conditions; i.e. 100mW/cm2, Air 
Mass (AM) 1.5 Global (G), and 25 ◦C, as generated by a solar simulator 
Newport xenon arc lamp and an AM 1.5G filter. The electrical char-
acterization was completed by determining the characteristic electrical 
parameters, including the short-circuit current density (J𝑠𝑐), the open-
circuit voltage (V𝑜𝑐), the maximum power point (P𝑚𝑝𝑝), the fill factor 
(FF), and the PCE. Obtaining these parameters allowed to extract the 
PCE value as follows:

𝑃𝐶𝐸 =
𝑃𝑚𝑝𝑝

𝑃𝑖𝑛𝑐
=

𝐽𝑠𝑐𝑉𝑜𝑐𝐹𝐹
𝐺

(1)

being P𝑖𝑛𝑐 the incident solar power on the OSCs, which derives from the 
incident irradiance of the solar simulator, G.

The block diagram of the equipment for the acquisition system is pre-
sented in Fig. 1. This permitted obtaining a database with 166 entries. 
The variables and their units are presented in Table 2. Notice that, in 
order to get further insights on the future performance of the OSCs, en-
vironmental conditions at laboratory have also been measured, despite 
the devices were encapsulated.

As an example, Fig. 2 presents an OSC device contained in the 
database, for which its current density (J) data have been periodically 
acquired against voltage (V) over time. Specifically, Fig. 2(a) displays 
the voltage range on the X-axis from 0 to 0.5V, while Fig. 2(b) adjusts 
the scale to show the range from 0 to 0.25V, allowing for a clearer ob-
servation of the evolution of the J-V curve when days go by (different 
colors of the legend). The degradation principles of these organic devices 
suggest that over time, these curves, from which maximum power and 
energy conversion efficiency are obtained, should consistently decay.

Likewise, Fig. 3 compares the temporal evolution of three different 
OSCs in terms of their normalized PCE values, ranging from 0 to 1, for 
more than 180 days. Please note that normalization is used for visual-
ization purposes, as typically used in this field (Würfel & Würfel, 2016) 
when analyzing PCE decay. Once again, it is confirmed that time leads 
to the degradation of the device’s conversion efficiency. However, it also 

3 https://github.com/POLI-NANO/OSCs

Table 2 
Detail of the variables in the dataset: Manufacturing 
variables and environmental conditions at laboratory. It 
contains 166 entries.
    Variables  Values [min-max]  std  
  PCE  [0.27-1.32] %  0.25  
  quantity DS HTL  [250-1000] 𝜇l  0.19  
  P3HT  [1-1.2] mg  0.07  
  PCBM  [0.8-1] mg  0.07  
  ratio P3HT:PCBM  [1-1.25] -  0.09  
  Temperature  [12-23] ◦C  2.81  
  Hummidity  [33-88] %  17.78 
  Dew point  [3-19] ◦C  3.99  
  Pressure  [997-1022] hPa  7.25  
  Time  [0-181] days  60.21 

emerges that differences in the fabrication of the OSCs, as well as the en-
vironmental conditions during their measuring, may influence the trend 
followed by the PCE over time.

2.3.  Regression problem with classical approaches

This study aims to automatically model the degradative behavior ex-
hibited by manufactured OSCs using ML approaches, which is a regres-
sion problem. In order to establish further comparisons that highlight 
and reinforce the abilities of ML-based protocols, a preliminary step was 
carried out to present regression fitting using traditional LS-supported 
Bayesian methods.

Regression is a method for estimating the relationship between a re-
sponse or output variable and one or more predictor or input variables. 
Linear and non-linear regression serve as estimators of values between 
observed data points. From that starting point, a regression model re-
lates response data to predictor data through one or more coefficients. 
Then a parametric fitting algorithm is needed to calculate some model 
coefficients from a set of input data. Therefore, the parametric algorithm 
estimates deterministic components, whereas random components are 
typically described as the error. Considering the model as a coefficient 
function of the independent variable, the error encodes random fluctu-
ations around a Gaussian probability distribution. In many scopes, the 
goal is to minimize that error, classically addressed by means of LS fit-
ting approaches, such as: linear mean LS, weighted LS, robust LS, non-
linear LS, etc.
𝑦 = 𝑓 (𝑋, 𝛽) + 𝜀 (2)

where 𝑦 is the output vector data of n×1, corresponding to the input 
data in 𝑋 of n×m, after being applied 𝑓 as a non-linear function of 
the coefficient vector 𝛽 (m×1), being 𝜀 the vector of unknown errors of 
n×1. Afterwords, the SSE is minimized, understood as the residual sum 
of squares, given a set of 𝑛 data values, the residual value of the 𝑖-th 
value 𝑟𝑖 is calculated as:
𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖 (3)

where 𝑦𝑖 represents the 𝑖-th observed value and 𝑦̂𝑖 represents the 𝑖-th 
estimated value, and accordingly:

𝑆𝑆𝐸 =
𝑛
∑

𝑖=1
𝑟2𝑖 =

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (4)
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Fig. 2. Evolution of current density (J) vs. voltage (V) over time (days) for the OSC 𝐶𝑒𝑙𝑙2. (a) Curve J-V with V ∈[0-0.7] V. (b) Same curve J-V with V ∈[0-0.25] V.

Fig. 3. Evolution of the normalized PCE over time for three different OSCs.

Subsequently, the algorithm proceeds iteratively calculating the coef-
ficients from an initial seed. Sometimes non-linear models trust on 
heuristic schemes to calculate initial values. For others models, coef-
ficients randomly initialized in ranges from [0-1]. Then the response 
value is given as 𝑦̂ = 𝑓 (𝑋, 𝛽), computed using the jacobian matrix of 
𝑓 (𝑋, 𝛽), as the matrix that contains the partial derivatives with re-
spect to the coefficients of 𝛽. Finally, the adjustment of the coefficients 
for the next iteration lies on some non-linear LS algorithms, such as 
Levenberg-Marquardt, Gradient descent or Gauss-Newton (Holland & 
Welsch, 1977). Whenever the fitting meets the specified convergence 
criteria, the final solution is assumed as valid.

After observing in Section 2.2 the behavior of PCE over time for the 
various OSCs contained in our database, it suggests that the LS regres-
sion fitting models yielding the best results are those with non-linear 
characterization. Table 3 displays the selected models along with their 
expressions as a function of time, dependent on the adjustment coeffi-
cients. It should be noted that the capability of these classical models 
lies solely in modeling the univariate behavior of the time effect on the 

Table 3 
LS Bayesian regression fitting models to estimate PCE, 
denoted as 𝑓 (𝑥), where 𝑥 represents time by means of 
parametric models.
    Parametric model  Coefficient expression of 𝑓 (𝑥) 
 𝑒𝑥𝑝1 𝑎𝑒𝑏𝑥  
 𝑒𝑥𝑝2 𝑎𝑒𝑏𝑥 + 𝑐𝑒𝑑𝑥  
 𝑔𝑎𝑢𝑠𝑠1 𝑎1𝑒−[(𝑥−𝑏1 )∕𝑐1 ]

2  
 𝑔𝑎𝑢𝑠𝑠2 𝑎1𝑒−[(𝑥−𝑏1 )∕𝑐1 ]

2 + 𝑎2𝑒−[(𝑥−𝑏2 )∕𝑐2 ]
2  

 𝑝𝑜𝑙𝑦3 𝑝1𝑥3 + 𝑝2𝑥2 + 𝑝3𝑥 + 𝑝4  

PCE values. While it is possible to explore other LS regression fitting 
in the multivariate domain, they only allow for establishing linear rela-
tionships, which do not adequately capture the behavior of our devices.

2.4.  ML Framework

In contrast to the previous classical approaches, ML moves forward 
to produce non-parametric regression models that adjust more complex 
behaviors. In this work, we exploit the advantages of a software frame-
work developed under Python, ROBERT4 (Dalmau & Alegre-Requena, 
2024b) (v1.0.6; see Appendix C for reproducibility details), that facil-
itates hyper-optimization and benchmarking over well-recognized ML 
regression models by single command line instruction. This automated 
framework consists of the following modules (for further details please 
check the online documentation (Dalmau and Alegre Requena, 2025)):

• CURATE (data curation): It processes the input dataset in order to 
filter correlated descriptors, noise, duplicates, as well as to identify 
and to convert categorical variables into one-hot descriptors.

• GENERATE (model selection): It iterates through multiple hyper-
optimized models from scikit-learn (Pedregosa et al., 2011), includ-
ing Random Forest (RF) (Breiman, 2001), Multivariate Linear Model 
(MVL) (Draper & Smith, 1998), Gradient Boosting (GB) (Friedman, 
2001), Gaussian Process (GP) (Rasmussen & Williams, 2005), Ad-
aBoost Regressor (AdaB) (Freund & Schapire, 1997), MLP Regressor 
Neural Network (NN) (Hornik et al., 1989), and Voting Regressor 
(VR) (Rokach, 2010). The algorithms are combined with different 

4 https://github.com//jvalegre/robert
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training-validation split sizes, from 60-40% to 90-10% using ran-
dom data splitting. For each combination of algorithm and training 
size, two models are generated: one with all the descriptors and an-
other with only the most important variables detected by permuta-
tion feature importance (PFI) analysis. Among all the possibilities, 
the program selects two optimal models based on RMSE error.

• PREDICT (external predictions selection): the framework is able to 
predict new target values. Moreover, it provides feature importances 
using SHapley Additive exPlanations (SHAP) and Permutance Fea-
ture Importance (PFI) analysis, and outlier detection.

• VERIFY (assesing predictive ability): It assesses the predictive abil-
ity of the models, considering tests such as y-shuffle, y-mean, k-fold 
cross-validation, and prediction with one-hot encoding.

• REPORT (generation of PDF reports): With the aim to enhance re-
producibility and transparency, this module offers a detailed report 
containing comprehensive information about the ML models utilized 
and replication instructions through command line executions.

3.  Results

This section introduces the results obtained using both classical LS 
regression fitting and ML models to estimate the temporal behavior of 
our OSCs. The selected error metrics (de Azevedo Takara et al., 2024; 
Khan & Choi, 2025) for analysis are briefly presented below:

• Coefficient of determination R2: It quantifies how well the inde-
pendent variables explain the variability of the dependent variable. 
Higher values indicate that the model fits the data well and captures 
a larger proportion of the variability in the dependent variable.

𝑅2 = 1 − 𝑆𝑆𝐸
𝑆𝑆𝑡𝑜𝑡

(5)

where SSE was defined in (4) and SS𝑡𝑜𝑡 is the total sum of squares.

• RMSE: It provides a measure of the average magnitude of the errors 
made by the model in its predictions. Minimizing this error is often 
a goal when training regression models in ML.

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)

2 (6)

where 𝑛 is the number of samples, 𝑦𝑖 is the real observed value and 
𝑦̂𝑖 is the predicted value.

• MAE: Another common objective error that measures the average 
magnitude of the errors between the predicted values and the actual 
values of the target variable. Unlike RMSE, which penalizes large er-
rors more heavily, MAE treats all errors equally by taking the average 
of their absolute values.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖| (7)

3.1.  Classical LS regression fitting results

Fig. 4 presents the accuracy metrics of the five Bayesian regression 
models introduced in Table 3 to estimate the performance of PCE over 
180 days, for each of the OSCs available in the database (Table 2). It 
is worth noting that these results correspond to the mean values, along 
with the standard deviation for each OSC. In general terms, it can be 
observed that these models tend to perform slightly better over short 
time periods compared to the longer experiments.

The maximum errors for all temporal fittings are bounded to val-
ues ∼0.06. According to the results of Fig. 4, it is observed that on aver-
age, the 𝑔𝑎𝑢𝑠𝑠2 model, consisting of two Gaussian terms, is the one that 
best estimates the performance of the OSCs in terms of PCE over time. 
However, it should be noted that for a 30-day fit, this model requires 
more points to achieve a valid R2. It is worth mentioning that these 
methods cannot characterize the behavior of all devices contained in 

Fig. 4. Accuracy metrics of the LS-supported Bayesian regression fitting over time. Five different models are evaluated: 𝑒𝑥𝑝1 ■, 𝑒𝑥𝑝2 ■, 𝑔𝑎𝑢𝑠𝑠1 ■, 𝑔𝑎𝑢𝑠𝑠2 ■, 
𝑝𝑜𝑙𝑦3 ■. (a) Coefficient of determination, R2. (b) Root mean squared error, RMSE. (c) Sum of squared errors, SSE. (d) Mean absolute error, MAE.
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our database in a global manner, and the results obtained reflect solely 
the mean performance of fitting for individual OSCs.

3.1.1.  PCE Prediction with LS
Once preliminary fittings have been made with traditional LS re-

gression methods, it has been found that the best fitting corresponds to 
a double-term Gaussian function. Now we analyze the robustness of this 
method to predict the behavior of PCE against the temporal variable. 
For this purpose, four regression fittings have been obtained with PCE 
data acquired up to: 30, 60, 90, and 120 days, respectively. Then the 
behavior of PCE at 180 days has been predicted for each one (Fig. 5 
and Table 4). It can be confirmed that only the fitting with data up to 
120 days is able to predict reliably future PCE values. This result demon-
strates that even the best parametric LS fitting regression model requires 
more than half of the temporal data to reliably model the PCE evolution 
at future time values.

3.2.  ML Regression results

In this section, we generate ML models to study the temporal behav-
ior of PCE. Notice that, unlike the previous LS-based regression fittings 
presented in Section 3.1, these ML models allow us to characterize the 

Fig. 5. PCE predition over time with the best LS-supported Bayesian regression 
fitting model (𝑔𝑎𝑢𝑠𝑠2). Four temporal datasets are used to compute the fittings: 
30 days −◦−; 60 days −◦−; 90 days −◦− and 120 days −◦−.

Table 4 
Accuracy metrics of the best LS-supported Bayesian regression fit-
ting model (𝑔𝑎𝑢𝑠𝑠2) to predict PCE over time, presented in Fig. 5.
    Fitting data  Prediction  RMSE  SSE  MAE  
  30 days  60 days  0.0516  0.0213  0.0277  
  90 days  0.1141  0.1302  0.0680  
  120 days  0.1872  0.4905  0.1339  
  150 days  0.2224  0.8405  0.1705  
  180 days  0.2442  1.3117  0.1979  
  60 days  90 days  0.0454  0.0206  0.0220  
  120 days  0.1083  0.1641  0.0685  
  150 days  0.1511  0.3879  0.1046  
  180 days  0.1911  0.8038  0.1445  
  90 days  120 days  0.0150  0.0032  0.0103 
  150 days  0.0160  0.0043  0.0119  
  180 days  0.0190  0.0079  0.0118  
  120 days  150 days  0.0158  0.0042  0.0127  
  180 days  0.0138  0.0038  0.0105  

Table 5 
Accuracy metrics of the ML regression models computed with training data up 
to 180 days. Run on an Apple M1 8-core 3,2 Ghz; Python 3.10.12.
    Training data  ML model 𝐑2  RMSE  SSE  MAE time 

(s)
 

  180 days  GB-90-10  0.96  0.0640  0.0595  0.0520 8.01 
  GB-80-20  0.96  0.0720  0.0600  0.0560 7.73 
  GB-70-30  0.94  0.0840  0.0672  0.0650 7.70 
  GB-60-40  0.95  0.0700  0.0431  0.0500 7.77 
  NN-90-10  0.66  0.1400  0.3732  0.1100 23.46 
  NN-80-20  0.76  0.1100  0.1138  0.0670 22.99 
  NN-70-30  0.60  0.1600  0.3555  0.1200 17.70 
  NN-60-40  0.43  0.2500  0.7265  0.1800 15.65 
  MVL-90-10  0.81  0.1000  0.2929  0.0810 4.06 
  MVL-80-20  0.81  0.1000  0.2783  0.0800 4.07 
  MVL-70-30  0.74  0.1400  0.2696  0.1000 4.10 
  MVL-60-40  0.74  0.1300  0.2802  0.0920 4.09 
  RF-90-10  0.96  0.0480  0.0246  0.0390 10.01 
  RF-80-20  0.97  0.0520  0.0309  0.0370 10.66 
  RF-70-30  0.94  0.0670  0.0398  0.0460 10.65 
  RF-60-40  0.93  0.0850  0.0644  0.0580 10.39 

performance of all the OSC devices under a single model, while also 
using the multiple variables in the dataset. These include manufactur-
ing parameters and environmental conditions at each measurement. To 
comparatively assess the ML models, Table 5 presents detailed accuracy 
results for the algorithms GB, NN, MVL, and RF, with training data up to 
180 days. Please note that all these models have PFI enabled, so that the 
most important features are considered. For further details about these 
features see Section 3.2.2 and Appendix C.

The nomenclature for the models is: ALGORITHM-TRAINING-VALID 
(e.g. RF-90-10). Results with different training-validation ratios are pre-
sented: from 90-10% to 60-40%. In this study, the optimal ML models 
used RF algorithms with a 90-10 training-validation partitioning. It can 
be observed that, in general, all MAE and RMSE values are bounded 
within ranges ∼[0.02-0.03], for training data of 120 days onwards.

The most robust model is highlighted in bold, considering the overall 
performance across all presented metrics, with priority given to the R2

value. Please note that the supplementary material (Appendix A) con-
tains these same metrics for further inspection of models obtained with 
other temporal ranges. Likewise, the detailed parameters for each model 
can be consulted in Appendix C. It is worth noting that errors of the 
ML methods are clearly bounded, regardless they operate on a multi-
variate database, in contrast to univariate Bayesian fitting presented in 
Section 3.1.

3.2.1.  PCE Prediction with ML
After comparatively evaluating the performance of ML models, this 

section validates their ability to predict the temporal behavior of the 
PCE for an OSC device never seen by the models. Firstly, the models 
are trained and validated without data of 𝐶𝑒𝑙𝑙4. Standing out above the 
others are the GB-90-10 and RF-90-10 models. In line with previous 
results (Table 5), and thus considering its robustness to model the en-
tire dataset, RF-90-10 has been selected to get predictive inferences up 
to 180 days for the unseen OSC 𝐶𝑒𝑙𝑙4. Fig. 6 provides such results. In 
particular, Fig. 6(a) presents the results of the model when the dataset 
is splitted into traning and validation, at 90%-10% (blue and yellow 
points), whereas Fig. 6(b) shows the prediction for 𝐶𝑒𝑙𝑙4 when its data 
are used as external test.

Next, Fig. 7 presents validation tests. Fig. 7(a) shows the RMSE er-
ror of the model compared to those of the tests: y-mean, y-shuffle and 
onehot. Fig. 7(b) produces a 5-fold cross-validation test (Kohavi, 1995), 
with satisfactory results. In consequence, neither data leakage nor over-
fitting is evidenced.

Finally, Fig. 8 compares the temporal evolution of the PCE for 𝐶𝑒𝑙𝑙4
with the predicted data obtained by the model.
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Fig. 6. Results of the best ML model, RF-90-10: (a) training-validation without data of 𝐶𝑒𝑙𝑙4 (R2=0.96, MAE=0.05, RMSE=0.071); (b) prediction of 𝐶𝑒𝑙𝑙4 as 
external test (R2=0.88, MAE=0.015, RMSE=0.021).

Fig. 7. Validation of the best ML model, RF-90-10: (a) RMSE values for validation tests y-mean, y-shuffle and onehot; (b) 5-fold cross-validation test (R2=0.89, 
MAE=0.06, RMSE=0.09).

Fig. 8. PCE prediction over time with the best ML regression model (RF-90-10, 
blue) for an OSC not seen during the training-validation process (𝐶𝑒𝑙𝑙4, black).

3.2.2.  Feature analysis
Considering the results obtained in the previous section, it is worth-

while to study the top-performing ML model that characterizes the be-

havior of OSCs (i.e. RF-90-10). ML models trained with a limited number 
of data points are unable to characterize and predict with sufficient ac-
curacy. For this reason, we focused on analyzing the complete dataset, 
with measures up to 180 days. In this regard, PFI and SHAP analyses are 
presented below, by means of Figs. 9 and 10, respectively. PFI evalu-
ates the significance of individual features in a ML model by measuring 
the increase in the model’s prediction error after permuting the val-
ues of a specific feature. The resulting increase in error indicates the 
dependency on that feature (Breiman, 2001; Fisher et al., 2019). Be-
sides, SHAP permits interpreting individual predictions of ML models 
by computing the contribution of each feature to the model’s as an ad-
ditive feature attribution method (Lundberg & Lee, 2017), i.e., it per-
mits showing how much a feature biases the model’s prediction up or
down.

Then Fig. 9 presents the influence of the most relevant feature for 
the model, after applying PFI filtering, that is, removing variables with 
low effect on the R2. It is confirmed that the amount of solvent (PE-
DOT:PSS) in the HTL layer has the most significant influence. Likewise, 
the P3HT:PCBM ratio also demonstrates certain relevance. Additionally, 
dependencies with the value of PCBM are also observed, since it con-
straints the P3HT:PCBM ratio, given its non-linear influence in the de-
nominator.

As for the environmental conditions, it is known that low humidity 
proves to be beneficial for these OSCs, which in our geographical lo-
cation is normally correlated with high temperatures and atmospheric 
pressures. In a similar manner it acts the dew point, which directly

Expert Systems With Applications 296 (2026) 128890 

8 



D. Valiente et al.

Fig. 9. PFI results for the best ML model generated with data up to 180 days.

Fig. 10. SHAP results for the best ML model generated with data up to 180 
days.

correlates with humidity. Nonetheless, the device encapsulation demon-
strates that the effect of these variables is minimized, as PFI filtering 
proves that they are not relevant enough to influence substantially the 
model.

Regarding the SHAP analysis, Fig. 10 validates the previous insights: 
high values of the amount of solvent PEDOT:PSS in the HTL layer and 
high ratios of P3HT:PCBM contribute positively to get higher and stable 
PCE values. Besides this, the effect of the PCBM value on the higher 
P3HT:PCBM ratio is again confirmed.

Overall, the importance of the quantity of PEDOT:PSS in the HTL 
layer has been demonstrated as it plays an essential role in the multi-
layer structure of the OSCs. It confirms its relevance as the second layer 
to cover sufficiently the substrate and thus increasing the PCE and its 
stability. Moreover, the ratio P3HT:PCBM also demonstrates its positive 
role in dealing as charge carrier in the HTL layer and therefore assuring 
higher PCE values.

4.  Discussion and conclusions

This paper has presented the application of optimal ML frameworks 
to characterize the degradation behavior, in terms of PCE, of OSCs 
with multilayer structure ITO/PEDOT:PSS/P3HT:PCBM/Al. A dataset 
with 166 entries entries was created, containing PCE values of various 
OSC devices measured over 180 days. This dataset was supplemented 
with seven variables describing environmental conditions of the exper-
iments and manufacturing parameters of the devices. Through hyper-
optimization of a set of ML models we have presented an accuracy anal-
ysis of different methods, which were fed with OSC data periodized into 
sets from 30 to 180 days. The benchmarking has confirmed the validity 
of models like RF or GB to confer R2 values over 0.90, reaching in some 
extents R2∼0.96–0.97 and error metrics (RMSE, SSE and MAE) signif-
icantly low when long term data is used for training. To reinforce the 
suitability of these ML models, classical LS regression fitting methods 
have been compared. These proved not to be suitable for a multivari-
able dataset like ours, especially when dealing with long term data of 
the OSCs. Consequently, their ability to predict PCE values is highly 
unreliable.

ML models proved to offer high feasibility to predict the behavior 
of unknown OSCs. Feature analysis suggests that the most influential 
variable is the solvent in the HTL layer, i.e., the amount of PEDOT:PSS. 
This is explained as the multilayer structure of the OSCs needs a mini-
mum value of PEDOT:PSS to ensure a layer that completely covers the 
substrate. Moreover, the ratio P3HT:PCBM also exhibits significant im-
portance, being higher values representative of greater impact on the 
model. Finally, it has been observed that variables such as temperature, 
humidity, dew point and pressure have lesser impact on the models, 
explained by the encapsulation made to the OSCs during their manufac-
turing.

As the main limitations and challenges faced during this implemen-
tation of ML with OSCs, we observed that the accuracy of the measure-
ment equipments is a key aspect so as to have valid data to feed the 
models. Valid and wide ranges for the data are highly needed, accord-
ing to feasible OSC manufacturing process. Otherwise, models might 
predict unfeasible OSCs, whose manufacture is not possible.

5.  Glossary

• Al: Aluminium.
• ITO: Indium tin oxide.
• PEDOT:PSS: poly(3,4-ethylenedioxythiophene) polystyrene sul-
fonate.

• P3HT:PCBM: (poli(3-hexiltiofeno-2,5-diil):[6,6]-phenyl-C61-butyric 
acid methyl ester.

• PEDOT:PSS: poly(3,4-ethylenedioxythiophene) polystyrene sul-
fonate.
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Appendix A.  Extended accuracy metrics of ML models

This section comprises extended accuracy metrics of the ML models used in this work, when the temporal scope of the training-validation data 
is varied: 30, 60, 90, 120 and 150 days, respectively. In particular, the accuracy study of the best ML model (RF-90-10) over time, is presented in 
Fig. A.1 (Tables A.1–A.5).

Fig. A.1. Accuracy of the best ML regression models over time: 30 days RF-60-40 ■; 60 days RF-90-10 ■; 90 days RF-90-10 ■; 120 days RF-90-10 ■; 150 days 
RF-90-10 ■ and 180 days RB-90-10 ■. (a) Coefficient of determination, R2. (b) Root mean squared error, RMSE. (c) Sum of squared errors, SSE. (d) Mean absolute 
error, MAE.

Table A.1 
Accuracy metrics of the ML regression models computed with training data up to 30 
days.
    Training data  ML model 𝐑2  RMSE  SSE  MAE  
  30 days  GB-80-20  0.86  0.140  0.0647  0.1200  
  GB-70-30  0.73  0.140  0.0622  0.1200  
  GB-60-40  0.84  0.160  0.1103  0.1500  
  NN-80-20  0.76  0.180  0.1655  0.1800  
  NN-70-30  0.51  0.170  0.0832  0.1600  
  NN-60-40  0.62  0.170  0.0931  0.1400  
  MVL-80-20  0.71  0.200  0.0984  0.1500  
  MVL-70-30  0.62  0.220  0.1006  0.1400  
  MVL-60-40  0.66  0.170  0.1067  0.1400  
  RF-80-20  0.86  0.130  0.0573  0.1000  
  RF-70-30  0.78  0.130  0.0558  0.1000  
  RF-60-40  0.89  0.120  0.0725  0.0950 

Expert Systems With Applications 296 (2026) 128890 

10 



D. Valiente et al.

Table A.2 
Accuracy metrics of the ML regression models computed with training data up to 60 
days.
    Training data  ML model 𝐑2  RMSE  SSE  MAE  
  60 days  GB-90-10  0.85  0.1000  0.0155  0.0800 
  GB-80-20  0.76  0.1500  0.0433  0.1300  
  GB-70-30  0.84  0.1500  0.0597  0.1300  
  GB-60-40  0.78  0.1700  0.1275  0.1500  
  NN-90-10  0.89  0.1300  0.1239  0.1000  
  NN-80-20  0.86  0.1700  0.1677  0.1500  
  NN-70-30  0.88  0.1500  0.0506  0.1300  
  NN-60-40  0.79  0.1600  0.0677  0.1400  
  MVL-90-10  0.71  0.1500  0.1059  0.1300  
  MVL-80-20  0.80  0.1700  0.1120  0.1500  
  MVL-70-30  0.63  0.1700  0.1117  0.1500  
  MVL-60-40  0.61  0.1900  0.1290  0.1500  
  RF-90-10  0.98  0.1000  0.0702  0.0850  
  RF-80-20  0.92  0.1400  0.0832  0.1300  
  RF-70-30  0.78  0.1600  0.0747  0.1400  
  RF-60-40  0.81  0.1300  0.0578  0.1000  

Table A.3 
Accuracy metrics of the ML regression models computed with training data up to 90 
days.
    Training data  ML model 𝐑2  RMSE  SSE  MAE  
  90 days  GB-90-10  0.87  0.0730  0.0255  0.0660 
  GB-80-20  0.87  0.1100  0.0736  0.0860  
  GB-70-30  0.88  0.0940  0.0775  0.0770  
  GB-60-40  0.75  0.1400  0.0755  0.1100  
  NN-90-10  0.86  0.0790  0.0332  0.0630  
  NN-80-20  0.82  0.1300  0.1595  0.1200  
  NN-70-30  0.46  0.1900  0.1071  0.1700  
  NN-60-40  0.52  0.1900  0.1611  0.1500  
  MVL-90-10  0.61  0.1100  0.3161  0.1000  
  MVL-80-20  0.63  0.1700  0.1468  0.1400  
  MVL-70-30  0.54  0.1700  0.1378  0.1400  
  MVL-60-40  0.55  0.1800  0.1569  0.1500  
  RF-90-10  0.89  0.0750  0.0300  0.0670  
  RF-80-20  0.87  0.0940  0.0909  0.0700  
  RF-70-30  0.80  0.1000  0.0613  0.0780  
  RF-60-40  0.74  0.1400  0.0860  0.1100  

Table A.4 
Accuracy metrics of the ML models computed with training data up to 120 days.
    Training data  ML model 𝐑2  RMSE  SSE  MAE  
  120 days  GB-90-10  0.95  0.0670  0.0312  0.0540  
  GB-80-20  0.88  0.0700  0.0324  0.0510  
  GB-70-30  0.89  0.0810  0.0453  0.0620  
  GB-60-40  0.81  0.1300  0.1447  0.1100  
  NN-90-10  0.88  0.0600  0.2140  0.0450  
  NN-80-20  0.83  0.0890  0.0576  0.0660  
  NN-70-30  0.71  0.1300  0.0767  0.0960  
  NN-60-40  0.59  0.1700  0.1743  0.1300  
  MVL-90-10  0.70  0.0990  0.1729  0.0850  
  MVL-80-20  0.65  0.1400  0.1820  0.1100  
  MVL-70-30  0.60  0.1600  0.2311  0.1400  
  MVL-60-40  0.51  0.1800  0.2370  0.1500  
  RF-90-10  0.98  0.0300  0.0507  0.0240 
  RF-80-20  0.88  0.0680  0.0651  0.0480  
  RF-70-30  0.86  0.0920  0.0609  0.0690  
  RF-60-40  0.84  0.1000  0.0574  0.0770  
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Table A.5 
Accuracy metrics of the ML regression models computed with training data up to 150 
days.
    Training data  ML model 𝐑2  RMSE  SSE  MAE  
  150 days  GB-90-10  0.98  0.0300  0.0510  0.0230  
  GB-80-20  0.93  0.0660  0.0242  0.0420  
  GB-70-30  0.94  0.0730  0.0351  0.0580  
  GB-60-40  0.91  0.0820  0.0591  0.0640  
  NN-90-10  0.90  0.0580  0.0760  0.0540  
  NN-80-20  0.82  0.0110  0.1277  0.0630  
  NN-70-30  0.88  0.0960  0.0871  0.0740  
  NN-60-40  0.78  0.1200  0.1533  0.0910  
  MVL-90-10  0.84  0.0920  0.2113  0.0800  
  MVL-80-20  0.87  0.1100  0.2139  0.0840  
  MVL-70-30  0.88  0.1200  0.2163  0.0900  
  MVL-60-40  0.82  0.1100  0.2184  0.0910  
  RF-90-10  0.97  0.0290  0.0219  0.0210 
  RF-80-20  0.96  0.0510  0.0394  0.0324  
  RF-70-30  0.94  0.0780  0.0417  0.0570  
  RF-60-40  0.90  0.0930  0.1069  0.0943  

Appendix B.  OSC Database

Database in 𝑐𝑠𝑣 file consisting of 166 entries which includes up to seven variables regarding both the manufacturing process and environmental 
conditions for more than 180 days (Table 2). PCE values of several polymeric OSCs with a multilayer structure ITO/PEDOT:PSS/P3HT:PCBM/Al 
were measured.

In addition, to ensure reproducibility, another 𝑐𝑠𝑣 file provides a dataset without data of 𝐶𝑒𝑙𝑙4. Finally, another 𝑐𝑠𝑣 file can be used to test the 
predictive ability of the model to predict data of such cell (see Section 3.2.1.)

Appendix C.  ROBERT Report

Detailed report obtained with ROBERT (v1.0.6) after modeling the entire database. Results and reproducibility details are contained in this file.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.eswa.2025.128890
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