Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/38850

New designs of ventricular catheters for hydrocephalus by 3-D computational fluid dynamics


no-thumbnailView/Open:

 Childs Nerv Syst New designs of ventricular catheters.pdf



5,74 MB
Adobe PDF
Share:

This resource is restricted

Title:
New designs of ventricular catheters for hydrocephalus by 3-D computational fluid dynamics
Authors:
Galarza, Marcelo
Giménez, Ángel
Pellicer, Olga
Valero, José
Amigó, José M.
Editor:
Springer
Department:
Departamentos de la UMH::Psicología de la Salud
Issue Date:
2014-08
URI:
https://hdl.handle.net/11000/38850
Abstract:
Introduction Based on a landmark study by Lin et al. of the two-dimensional flow in ventricular catheters (VCs) via computational fluid dynamics (CFD), we studied in a previous paper the three-dimensional flow patterns of five commercially available VC. We found that the drainage of the cerebrospinal fluid (CSF) mostly occurs through the catheter’s most proximal holes. In this paper, we design five VC prototypes with equalized flow characteristics. Methods We study five prototypes of VC by means of CFD in three-dimensional (3-D) automated models and compare the fluid-mechanical results with our previous study of currently in use VC. The general procedure for the development of a CFD model calls for transforming the physical dimensions of the system to be studied into a virtual wire-frame model, which provides the coordinates for the virtual space of a CFD mesh. The incompressible Navier–Stokes equations, a system of strongly coupled, nonlinear, partial differential equations governing the motion of the flow field, are then solved numerically. Results By varying the number of drainage holes and the ratio hole/segment, we improved flow characteristics in five prototypes of VC. Models 1, 2, and 3 have a distal to proximal decreasing flow. Model 4 has an inverse flow to the previous ones, that is, a distal to proximal increasing flow, while model 5 has a constant flow over the segments. Conclusions New catheter designs with variable hole diameter, number of holes, and ratio hole/segment along the catheter allow the fluid to enter the catheter more uniformly along its length, thus reducing the chance that the catheter becomes occluded.
Keywords/Subjects:
Hydrocephalus
Computational fluid dynamics (CFD)
Ventricular catheter
Shunt
Cerebrospinal fluid (CSF)
Flow
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
10.1007/s00381-014-2477-5
Published in:
Child's Nervous System, Vol. 31 (2015)
Appears in Collections:
Artículos- Psicología de la Salud



Creative Commons ???jsp.display-item.text9???