Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38850
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGalarza, Marcelo-
dc.contributor.authorGiménez, Ángel-
dc.contributor.authorPellicer, Olga-
dc.contributor.authorValero, José-
dc.contributor.authorAmigó, José M.-
dc.contributor.otherDepartamentos de la UMH::Psicología de la Saludes_ES
dc.date.accessioned2026-01-12T12:14:53Z-
dc.date.available2026-01-12T12:14:53Z-
dc.date.created2014-08-
dc.identifier.citationChild's Nervous System, Vol. 31 (2015)es_ES
dc.identifier.issn1433-0350-
dc.identifier.issn0256-7040-
dc.identifier.urihttps://hdl.handle.net/11000/38850-
dc.description.abstractIntroduction Based on a landmark study by Lin et al. of the two-dimensional flow in ventricular catheters (VCs) via computational fluid dynamics (CFD), we studied in a previous paper the three-dimensional flow patterns of five commercially available VC. We found that the drainage of the cerebrospinal fluid (CSF) mostly occurs through the catheter’s most proximal holes. In this paper, we design five VC prototypes with equalized flow characteristics. Methods We study five prototypes of VC by means of CFD in three-dimensional (3-D) automated models and compare the fluid-mechanical results with our previous study of currently in use VC. The general procedure for the development of a CFD model calls for transforming the physical dimensions of the system to be studied into a virtual wire-frame model, which provides the coordinates for the virtual space of a CFD mesh. The incompressible Navier–Stokes equations, a system of strongly coupled, nonlinear, partial differential equations governing the motion of the flow field, are then solved numerically. Results By varying the number of drainage holes and the ratio hole/segment, we improved flow characteristics in five prototypes of VC. Models 1, 2, and 3 have a distal to proximal decreasing flow. Model 4 has an inverse flow to the previous ones, that is, a distal to proximal increasing flow, while model 5 has a constant flow over the segments. Conclusions New catheter designs with variable hole diameter, number of holes, and ratio hole/segment along the catheter allow the fluid to enter the catheter more uniformly along its length, thus reducing the chance that the catheter becomes occluded.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHydrocephaluses_ES
dc.subjectComputational fluid dynamics (CFD)es_ES
dc.subjectVentricular catheteres_ES
dc.subjectShuntes_ES
dc.subjectCerebrospinal fluid (CSF)es_ES
dc.subjectFlowes_ES
dc.titleNew designs of ventricular catheters for hydrocephalus by 3-D computational fluid dynamicses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversion10.1007/s00381-014-2477-5es_ES
Aparece en las colecciones:
Artículos- Psicología de la Salud


no-thumbnailVer/Abrir:

 Childs Nerv Syst New designs of ventricular catheters.pdf



5,74 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.