Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/37196
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Lozano-Paredes, Dafne | - |
dc.contributor.author | SANCHEZ MUÑOZ, JUAN JOSE | - |
dc.contributor.author | Bote-Curiel, Luis | - |
dc.contributor.author | Melgarejo Meseguer, Francisco Manuel | - |
dc.contributor.author | Gil Izquierdo, Antonio | - |
dc.contributor.author | Gimeno Blanes, Francisco Javier | - |
dc.contributor.author | Rojo-Álvarez, José Luis | - |
dc.contributor.other | Departamentos de la UMH::Ingeniería de Comunicaciones | es_ES |
dc.date.accessioned | 2025-09-03T09:57:11Z | - |
dc.date.available | 2025-09-03T09:57:11Z | - |
dc.date.created | 2024 | - |
dc.identifier.citation | Computing in Cardiology | es_ES |
dc.identifier.issn | 2325-887X | - |
dc.identifier.uri | https://hdl.handle.net/11000/37196 | - |
dc.description.abstract | Ventricular Fibrillation (VF) is a critical cardiac arrhythmia characterized by rapid and irregular heartbeats, often leading to sudden cardiac death. Moreover, conventional methods for analyzing the patterns of heart rhythms are not able to fully explore the different origins of VF. Therefore, VF occurring during cardiopulmonary bypass (CPB) surgeries offers a unique opportunity to study how VF develops in real human situations. This research aims to classify the two VF types during CPB (VFON and VFOFF) and understand their mechanisms. The study uses manifold and deep learning techniques to examine VF signals from twelve VFON and seventeen VFOFF patients. Results show successful classification of the frequency evolution of the signal with 81.36% accuracy using Uniform Manifold Approximation and Projection (UMAP) and 90.52% accuracy using Temporal Convolutional Neural Networks. Both methods highlight distinct frequency and pattern variations, with frequency patterns being more easily identifiable than time events. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 4 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | CinC Community | es_ES |
dc.relation.ispartof | CINC 2024 | es_ES |
dc.relation.ispartofseries | 51 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología | es_ES |
dc.title | Ventricular Fibrillation Dynamics: Manifold Learning and Neural Network Approach | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.22489/CinC.2024.106 | es_ES |

Ver/Abrir:
CinC2024-106 - Ventricular Fibrillation Dynamics- Manifold Learning and Neural Network Approach.pdf
1,22 MB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.