Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/37196
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLozano-Paredes, Dafne-
dc.contributor.authorSANCHEZ MUÑOZ, JUAN JOSE-
dc.contributor.authorBote-Curiel, Luis-
dc.contributor.authorMelgarejo Meseguer, Francisco Manuel-
dc.contributor.authorGil Izquierdo, Antonio-
dc.contributor.authorGimeno Blanes, Francisco Javier-
dc.contributor.authorRojo-Álvarez, José Luis-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2025-09-03T09:57:11Z-
dc.date.available2025-09-03T09:57:11Z-
dc.date.created2024-
dc.identifier.citationComputing in Cardiologyes_ES
dc.identifier.issn2325-887X-
dc.identifier.urihttps://hdl.handle.net/11000/37196-
dc.description.abstractVentricular Fibrillation (VF) is a critical cardiac arrhythmia characterized by rapid and irregular heartbeats, often leading to sudden cardiac death. Moreover, conventional methods for analyzing the patterns of heart rhythms are not able to fully explore the different origins of VF. Therefore, VF occurring during cardiopulmonary bypass (CPB) surgeries offers a unique opportunity to study how VF develops in real human situations. This research aims to classify the two VF types during CPB (VFON and VFOFF) and understand their mechanisms. The study uses manifold and deep learning techniques to examine VF signals from twelve VFON and seventeen VFOFF patients. Results show successful classification of the frequency evolution of the signal with 81.36% accuracy using Uniform Manifold Approximation and Projection (UMAP) and 90.52% accuracy using Temporal Convolutional Neural Networks. Both methods highlight distinct frequency and pattern variations, with frequency patterns being more easily identifiable than time events.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent4es_ES
dc.language.isoenges_ES
dc.publisherCinC Communityes_ES
dc.relation.ispartofCINC 2024es_ES
dc.relation.ispartofseries51es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleVentricular Fibrillation Dynamics: Manifold Learning and Neural Network Approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.22489/CinC.2024.106es_ES
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones


Vista previa

Ver/Abrir:
 CinC2024-106 - Ventricular Fibrillation Dynamics- Manifold Learning and Neural Network Approach.pdf

1,22 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.