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1 Department of Signal Theory and Communications. Universidad Rey Juan Carlos, Spain
2 Arrhythmia and Electrophysiology Unit, Hospital Universitario Virgen de la Arrixaca, Spain
3 Department of Signal Theory and Communications. Universidad Miguel Hernández, Spain

Abstract

Ventricular Fibrillation (VF) is a critical cardiac ar-
rhythmia characterized by rapid and irregular heartbeats,
often leading to sudden cardiac death. Moreover, conven-
tional methods for analyzing the patterns of heart rhythms
are not able to fully explore the different origins of VF.
Therefore, VF occurring during cardiopulmonary bypass
(CPB) surgeries offers a unique opportunity to study how
VF develops in real human situations. This research aims
to classify the two VF types during CPB (VFON and
VFOFF) and understand their mechanisms. The study
uses manifold and deep learning techniques to examine
VF signals from twelve VFON and seventeen VFOFF pa-
tients. Results show successful classification of the fre-
quency evolution of the signal with 81.36% accuracy using
Uniform Manifold Approximation and Projection (UMAP)
and 90.52% accuracy using Temporal Convolutional Neu-
ral Networks. Both methods highlight distinct frequency
and pattern variations, with frequency patterns being more
easily identifiable than time events.

1. Introduction

Multiple wavelet reentrant electrical activity causes ven-
tricular fibrillation (VF), as shown on an electrocardiogram
(ECG), as ultrarapid baseline undulations with uneven tim-
ing and morphology. VF causes cardiac arrest, which is
characterized by a lack of pulse and unconsciousness. If
treatment is not received, sudden cardiac death (SCD) oc-
curs next. VF is initially detected in approximately 10% of
cardiac arrest cases [1]. The early treatment of VF may
include cardiopulmonary resuscitation (CPR) with a fo-
cus on early defibrillation as a means of preventing sud-
den death. Patients at a high risk of experiencing recurrent
VF are treated with implanted cardioverter-defibrillators
(ICDs) [1, 2].

Due to the high risk of SCD, understanding the funda-
mental mechanics of VF can be relevant for discovering the
underlying pathology and electrophysiology of the disease.
Studies have focused on examining the rate and regularity
of VF at various locations and times, with rotors reported
to function as fast periodic sources of activation [3]. De-
termining the dominant frequency of VF using methods
such as fast Fourier transform, short-time Fourier trans-
form, and pitch frequency analysis has been suggested [4].
However, the functioning of VF is not entirely clear due to
its highly volatile and erratic nature. Some regional varia-
tions have been identified, needing further investigation to
discover potential sources of VF [3, 4].

In this context, clarifying the various mechanisms un-
derlying VF is essential. Furthermore, studying VF during
cardiopulmonary bypass (CPB) can provide valuable in-
sights into its evolution in humans. Therefore, this study
employs manifold learning techniques and neural networks
to differentiate between the two possible types of VF dur-
ing CPB: one occurring when the machine starts working,
and the other preceding the cessation of machine activity.
This approach can offer an understanding of the distinct
dynamic properties of VF across different temporal and
frequency conditions.

2. Materials and Methods

2.1. The Dataset

In this study, the dataset used has electrocardiogram
(ECG) data collected during CPB procedures. Specifi-
cally, on the one hand, the dataset includes recordings from
twelve patients experiencing the denominating VFON.
These episodes are frequent during extracorporeal circu-
lation in cardiac surgery and could represent a natural evo-
lution pattern of VF from its onset to asystole. These
episodes were triggered after aortic clamping and perfu-
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sion. A CPB was performed with cannulation in the as-
cending aorta, and systemic temperature was lowered be-
tween 28 and 32 °C (moderate hypothermia). Myocardial
protection was achieved using cold hyperkalemic blood
cardioplegia via antegrade and retrograde routes. On the
other hand, seventeen patients experienced episodes of
VFOFF that originated from asystole in patients undergo-
ing cardiac surgery with extracorporeal circulation. They
were triggered after aortic declamping and restoration of
the patient’s cardiac circulation. The data was provided
by the Hospital Clı́nico Universitario Virgen de la Arrix-
aca (HCUVA) in Spain. Each recording consists of two
ECG leads with a sampling frequency of 200 Hz. A train-
test division was performed on the signals of 29 patients
to ensure robust evaluation, 18 cases were used to train the
model and 11 cases were reserved for testing. The anal-
ysis was conducted on both time and frequency windows.
For time-based analysis, classification was performed on
each time sample. For frequency-based analysis, signals
were segmented with overlapping windows, and the Welch
periodogram was applied. Ten windows were selected to
ensure frequency evolution over time, resulting in an ef-
fective window length of 2 seconds.

2.2. Manifold Learning

Supervised Uniform Manifold Approximation and Pro-
jection (UMAP) [5] was used for creating low-dimensional
representations of high-dimensional data based on alge-
braic topology and Riemann geometry. This enables the
exploration of dynamic characteristics inherent in VF sig-
nals over time, considering their spectral characteristics.
To do this, UMAP represents the probability of connection
between two places using a weighted network. As a re-
sult, low-dimensional (3-dimensional) latent spaces show
the properties of the VF signals.

There are other methods for dimensionality reduction,
such as t-distributed Stochastic Neighbour Embedding (t-
SNE) [6]. It operates by giving different points a lower
probability and similar points a higher probability. T-SNE
initially generates a probability distribution between pairs
of high-dimensional objects. Then, t-SNE minimizes the
Kullback-Leibler divergence between the two distributions
in the low-dimensional map. Therefore, it can reduce high-
dimensional data to 3 dimensions, such as network activa-
tions inside a layer of the TCN. Thus, the network response
in each layer can be visualized.

2.3. Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) [7] have
emerged as powerful tools for analyzing sequential data.
Moreover, convolutional neural networks can equal or sur-
pass the performance of recurrent networks, including ad-

vantages such as better parallelism, more control over the
size of the receptive field, better management of the net-
work memory footprint during training, and more stable
gradients.

A dilated causal convolution layer, which functions over
each sequence time or frequency step, is the fundamental
component of a TCN. Here, the activations calculated at
one-time steps do not depend on activations from subse-
quent time steps. Convolutional layers are usually assem-
bled on top of one another to build context from earlier
time steps. Finally, to obtain a larger receptive field, the di-
lation factor of successive convolution layers is increased
exponentially.

3. Experiments and Results

3.1. Manifold Learning with UMAP

UMAP was used to discern differences in frequency
evolution between VFON and VFOFF and to visualize the
latent space, aiding in understanding data representation
and relationships in a lower-dimensional space. As illus-
trated in Figure 1 (a) and (b), the spatial distribution of VF
signals for lead 1 and 2 is represented for both training and
testing datasets. , facilitating the examination of its spatial
distribution. The application of UMAP enabled the iden-
tification of subtle differences in frequency characteristics,
effectively distinguishing between VFON and VFOFF.

Embedded spaces from UMAP analysis served as fea-
tures in a classification model using a linear Support Vec-
tor Machine (SVM) to distinguish VFON and VFOFF. The
model achieved a final accuracy of 0.8136 and a recall of
0.8910. The confusion matrix in Table 1 (a) depicts classi-
fication results based on 2-second window signals captur-
ing frequency evolution.

3.2. Temporal Convolutional Networks

TCNs were utilized to improve classification accuracy
for VFON and VFOFF. TCNs operate based on receptive
field alterations, with specific parameters employed in the
network architecture. In this study, TCNs used 128 filters
of size seven across five blocks, with a dropout factor of
0.01 incorporated. They successfully identified frequency
evolution differences within VF during surgery phases,
achieving an accuracy of 0.9052 and sensitivity of 0.8295.

TCNs are traditionally applied to temporal series data,
so we decided to explore their efficacy in identifying pat-
terns of VF signals in time despite the apparent chaotic
structure and absence of discernible patterns in these sig-
nals. As a result, TCNs demonstrated the ability to detect
individual segments within the signals with an accuracy of
0.78 and a sensitivity of 0.7732. Both confusion matrices
for the time evolution and frequency evolution used TCNs
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Table 1. Confusion matrix of the different methods: (a) Confusion matrix of UMAP, where the samples are from the
frequency window of 2 seconds; (b) Confusion matrix of TCNs, where the samples are from each sample of the time
signal; (c) Confusion matrix of TCNs, where the samples are from the frequency window of 2 seconds.

(a) (b) (c)

Figure 1. UMAP and t-SNE embeddings showing VFON and VFOFF classes. Blue denotes represents VFON, and orange
represents VFOFF. The train image is positioned at the top while the test is placed at the bottom: (a) UMAP embedding of
VF when the signal comes from the first lead; (b) UMAP embedding of VF when the signal comes from the second lead;
(c) t-SNE embedding of the two types of VF obtained from the addition layer of the TCN.

can be seen in Table 1 (b) and (c). The classification of
each instance can be traced from the frequency window
back to the temporal signal, enabling an examination of
individual samples within the time domain. Moreover, the
relationship is direct for the TCN applied to the time sig-
nal, as each sample of the time signal is classified. This can
be seen in Figure 2, so we can identify specific misclassi-
fied regions. Embeddings can be used to determine how
the networks respond in each layer. In this case, we have
selected the final addition layer, where the layer adds in-
puts from multiple previous layers element-wise. The acti-
vations in these layers for each type of VF are represented
in Figure 1 (c), showing different clusters for VFON and

VFOFF types.

4. Discussion

UMAP effectively identified subtle differences in the
frequency domain, distinguishing between VFON and
VFOFF. It accurately captured the frequency evolution of
both VF types, except for short-duration VFON instances
and specific segments at the beginning and end of the sig-
nals. TCNs demonstrated the ability to detect differen-
tial patterns in VF signals over time and frequency. The
temporal evolution of the frequency indicates the accu-
rate identification of both types of VF, except for short-
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Figure 2. Sample classification after application of TCN to the time signal and frequency evolution of the signal: (a) Time
sample classification of 4 signals of FVON (blue) and three signals of FVOFF (orange), each classified instance correspond
to a sample in time; (b) Frequency sample (2s windows) classification of 4 signals of FVON (blue) and three signals of
FVOFF (orange), each classified instance correspond to a window in time.

duration VFON instances and specific segments at the be-
ginning and end of the signals. On the other hand, for time
evolution, the methods struggle to discern patterns in sig-
nal regions affected by noise or variations in signal am-
plitude. Moreover, the latent space visualization of TCN
activations revealed how the neural network distinguishes
between different VF classes by mapping them to distinct
regions, showing clear groupings of VFON and VFOFF
instances in training and test datasets.

5. Conclusions

Manifold learning with UMAP and TCNs effectively
distinguishes between VFON and VFOFF during CPB,
highlighting distinct frequency and temporal patterns.
Both methods successfully identify patterns in medium
and long-length signals, but they struggle with short-length
VFON signals. Future research will improve the detection
of subtle differences in shorter VF events.
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