Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/37196

Ventricular Fibrillation Dynamics: Manifold Learning and Neural Network Approach

Título :
Ventricular Fibrillation Dynamics: Manifold Learning and Neural Network Approach
Autor :
Lozano-Paredes, Dafne  
SANCHEZ MUÑOZ, JUAN JOSE  
Bote-Curiel, Luis  
Melgarejo Meseguer, Francisco Manuel  
Gil Izquierdo, Antonio  
Gimeno Blanes, Francisco Javier  
Rojo-Álvarez, José Luis  
Editor :
CinC Community
Departamento:
Departamentos de la UMH::Ingeniería de Comunicaciones
Fecha de publicación:
2024
URI :
https://hdl.handle.net/11000/37196
Resumen :
Ventricular Fibrillation (VF) is a critical cardiac arrhythmia characterized by rapid and irregular heartbeats, often leading to sudden cardiac death. Moreover, conventional methods for analyzing the patterns of heart rhythms are not able to fully explore the different origins of VF. Therefore, VF occurring during cardiopulmonary bypass (CPB) surgeries offers a unique opportunity to study how VF develops in real human situations. This research aims to classify the two VF types during CPB (VFON and VFOFF) and understand their mechanisms. The study uses manifold and deep learning techniques to examine VF signals from twelve VFON and seventeen VFOFF patients. Results show successful classification of the frequency evolution of the signal with 81.36% accuracy using Uniform Manifold Approximation and Projection (UMAP) and 90.52% accuracy using Temporal Convolutional Neural Networks. Both methods highlight distinct frequency and pattern variations, with frequency patterns being more easily identifiable than time events.
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.22489/CinC.2024.106
Publicado en:
Computing in Cardiology
Nombre Congreso:
CINC 2024
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.