Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34947

Estimation of Multilevel Simultaneous Equation Models through Genetic Algorithms

Título :
Estimation of Multilevel Simultaneous Equation Models through Genetic Algorithms
Autor :
González Espinosa, Martín  
Hernández Sanjaime, Rocío
López-Espín, Jose J.  
Editor :
MDPI
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2020
URI :
https://hdl.handle.net/11000/34947
Resumen :
Problems in estimating simultaneous equation models when error terms are not intertemporally uncorrelated has motivated the introduction of a new multivariate model referred to as Multilevel Simultaneous Equation Model (MSEM). The maximum likelihood estimation of the parameters of an MSEM has been set forth. Because of the difficulties associated with the solution of the system of likelihood equations, the maximum likelihood estimator cannot be obtained through exhaustive search procedures. A hybrid metaheuristic that combines a genetic algorithm and an optimization method has been developed to overcome both technical and analytical limitations in the general case when the covariance structure is unknown. The behaviour of the hybrid metaheuristic has been discussed by varying different tuning parameters. A simulation study has been included to evaluate the adequacy of this estimator when error terms are not serially independent. Finally, the performance of this estimation approach has been compared with regard to other alternatives.
Palabras clave/Materias:
multilevel simultaneous equation model
maximum likelihood estimation
genetic algorithms
optimization
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/math8122098
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.