Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34947
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGonzález Espinosa, Martín-
dc.contributor.authorHernández Sanjaime, Rocío-
dc.contributor.authorLópez-Espín, Jose J.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-18T12:15:10Z-
dc.date.available2025-01-18T12:15:10Z-
dc.date.created2020-
dc.identifier.citationMathematicses_ES
dc.identifier.issn2227-7390-
dc.identifier.urihttps://hdl.handle.net/11000/34947-
dc.description.abstractProblems in estimating simultaneous equation models when error terms are not intertemporally uncorrelated has motivated the introduction of a new multivariate model referred to as Multilevel Simultaneous Equation Model (MSEM). The maximum likelihood estimation of the parameters of an MSEM has been set forth. Because of the difficulties associated with the solution of the system of likelihood equations, the maximum likelihood estimator cannot be obtained through exhaustive search procedures. A hybrid metaheuristic that combines a genetic algorithm and an optimization method has been developed to overcome both technical and analytical limitations in the general case when the covariance structure is unknown. The behaviour of the hybrid metaheuristic has been discussed by varying different tuning parameters. A simulation study has been included to evaluate the adequacy of this estimator when error terms are not serially independent. Finally, the performance of this estimation approach has been compared with regard to other alternatives.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofseries8es_ES
dc.relation.ispartofseries12es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmultilevel simultaneous equation modeles_ES
dc.subjectmaximum likelihood estimationes_ES
dc.subjectgenetic algorithmses_ES
dc.subjectoptimizationes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleEstimation of Multilevel Simultaneous Equation Models through Genetic Algorithmses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/math8122098es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 2020_Estimation of Multilevel Simultaneous Equation Models through Genetic Algorithms.pdf

563,22 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.