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Abstract: Problems in estimating simultaneous equation models when error terms are not
intertemporally uncorrelated has motivated the introduction of a new multivariate model referred to
as Multilevel Simultaneous Equation Model (MSEM). The maximum likelihood estimation of the
parameters of an MSEM has been set forth. Because of the difficulties associated with the solution of
the system of likelihood equations, the maximum likelihood estimator cannot be obtained through
exhaustive search procedures. A hybrid metaheuristic that combines a genetic algorithm and an
optimization method has been developed to overcome both technical and analytical limitations in the
general case when the covariance structure is unknown. The behaviour of the hybrid metaheuristic
has been discussed by varying different tuning parameters. A simulation study has been included
to evaluate the adequacy of this estimator when error terms are not serially independent. Finally,
the performance of this estimation approach has been compared with regard to other alternatives.

Keywords: multilevel simultaneous equation model; maximum likelihood estimation; genetic
algorithms; optimization

1. Introduction

Simultaneous equation models (SEM) [1] and multilevel models [2] have been widely discussed
in the statistical literature and many applications arise in econometrics [3,4], medicine [5,6] or social
sciences [7,8]. Simultaneous equation models contemplate jointly dependent or endogenous variables
in a system of regression equations whereas multilevel models allow dealing with hierarchical or
clustered data. However, clustered data may be problematic in the simultaneous equation models
framework yielding to misleading results.

Indeed, grouped correlated observations may be precisely one of the causes that accounts for
unobserved heterogeneity in simultaneous equation models. Typically, these models assume serially
independent data, but it is well-known that ignoring the intraclass correlation across observations
induced by groupings can lead to significant bias in the parameter estimates [9]. Under the motivation
of overcoming limitations of traditional statistical models, it is necessary to think of new methodologies.

Multilevel simultaneous equation models combining both simultaneity and hierarchically
structured data emerge as a valuable solution in this sort of situation. However, the literature exploring
the confluence of these two factors in a single statistical models is scarce and it is worth investigating.
To the best of our knowledge, theory and practice of multilevel simultaneous equation modelling
are basically confined to recursive systems. So far, the existing methodology considers multilevel
models in which the endogeneity of some of the variables has been adjusted including additional
equations that create a recursive simultaneous equation model. Applications of these types of systems
are essentially found in studies analysing resources allocation in the educational system or factors
influencing women fertility [10,11].
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Alternatively, starting out from a different point of view, a novel modelling framework
denominated Multilevel Simultaneous Equation Model (MSEM) has been first introduced in
Hernández-Sanjaime et al. [12]. This proposed approach is not restricted to recursive systems and could
be gainfully used for estimating statistical models when faced with endogenous variables and temporal
correlated observations. Potential applications would comprehend extensions of simultaneous
equations models to problems in which error terms are temporally correlated. For instance, economic
problems with temporal data, social science studies with hierarchical data (e.g., students in schools,
people in districts...) or longitudinal research such as clinical trials, as long as these applications also
entail jointly dependent variables.

This latter approach introduces a matrix distribution with a double variance structure in a SEM in
which the assumption of intertemporally uncorrelated error terms is violated. The incorporation of an
among-row and an among-column covariance matrix pattern aims to solve the misspecification of the
model when this circumstance occurs. The maximum likelihood estimation of the parameters of an
MSEM has been already established theoretically and the adequacy of the model has been assessed
empirically when the double covariance strucuture is known [12].

Previously, under the assumption of known variance-covariance matrices, solutions to parameter
estimates have been explored using a general-purpose optimization solver that selects 2SLS estimates
of the coefficient matrices as starting values. The present paper addresses the estimation of the
parameters of a multilevel simultaneous equation model in the general case, that is, when the double
covariance structure is unknown. Although wanting to keep the same line of work in the general case,
we realised that using only an optimization procedure would not be sufficient. Because of the absence
of an analytical solution of the system of likelihood equations and the increasing complexity of the
search space, a heuristic is required. Namely, a genetic algorithm that creates multiple sets of random
parameters is considered.

Genetic algorithms are metaheuristics commonly used to generate high-quality solutions to
optimization problems as an alternative to exhaustive search procedures [13,14]. In particular,
genetic algorithms have been applied for estimating simultaneous equation models [15] and in the
problem of finding the best SEM from a set of variables [16]. Likewise, the use of other metaheuristics
or hybridations of several methods has been examined in the SEM context. A unified shared-memory
metaheuristic scheme and parallel versions of different metaheuristics (GRASP, genetic algorithms,
scatter search and their combinations) for obtaining a SEM from a dataset of variables have been
presented and compared in Almeida et al. [17].

In this paper, a hybrid metaheuristic is developed to solve the problem of estimating
an MSEM. The metaheuristic consists of a standard genetic algorithm that includes a call to the
nlm general-purpose optimization function comprised in the statistical software R [18]. The obtained
solution is efficient and its computational cost is considerably lower than finding a solution through
exhaustive search procedures.

The rest of the paper is organised as follows. Section 2 reviews the main characteristics of
simultaneous equation models. In Section 3, the multilevel simultaneous equation models is defined
and its estimation via the maximum likelihood method is established. Section 4 describes the basis
of the hybrid metaheuristic proposed for obtaining the parameters of an MSEM. Section 5 discusses
different options for model estimation and reports the simulation results. Finally, the main conclusions,
methodology limitations and future research are outlined in Section 6.

2. Simultaneous Equation Models

In the general linear regression model, one deals with a situation in which a dependent variable
is expressed as a function of a set of explanatory variables that are either non-stochastic or at least
independent of the error terms. Frequently, in some problems this assumption cannot hold. Many times
we are interested in a model in which the dependent variable in one equation can also determine some
of the explanatory variables by entering another equation (or equations), that is, a model in which a
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number of variables are mutually and simultaneously determined. It is these types of situations that
are considered in the theory of simultaneous equation models.

The structural form of a simultaneous equation model for a system with m equations,
m endogenous variables (which influence and are influenced by other variables) and k predetermined
variables (which influence but are not influenced by the system) is

Y = YA + XB + E (1)

where Y = [y1, ..., ym] is a N ×m matrix of N observations of m endogenous variables, X = [x1, ..., xk]

is a N × k matrix of N observations of k non-random predetermined variables which contains both
exogenous and lagged endogenous variables, and E = [e1, ..., em] is a N ×m matrix of the structural
disturbances of the system. The matrices A (m×m) and B (k×m) are the endogenous and exogenous
unknown coefficient matrices, respectively (by convention, aii = 0, i = 1, 2, ..., m). The rows of E,
denoted et·, have the properties

eT
t· ∼ N(0, Σ) E(eT

t·, et′ ·) = δtt′Σ t, t
′
= 1, 2, ..., N (2)

δtt′ being the Kronecker delta and Σ a positive definite matrix.
Thus, the error terms et· (t = 1, ..., N) are assumed to be serially independent random vectors

normally distributed with 0 mean vector and covariance matrix Σ. Additionally, we make the
customary assumptions that error terms are uncorrelated with the predetermined variables of the
system and there is no linear dependence among the predetermined variables

E(XTE) = 0 and rank(X) = k (3)

Finally, assuming that (I − A) is non-singular, the endogenous variables can be uniquely
determined in terms of the predetermined and random variables of the system and the reduced
form of the model becomes

Y = XΠ + V where Π = B(I − A)−1 and V = E(I − A)−1 (4)

Before considering the estimation of the model, we shall examine the identification problem.
If the order condition mi − 1 ≤ k − ki holds, where mi and ki are the number or endogenous and
exogenous variables in the i-th equation (i = 1, ..., m), an equation is identified. It is only in such
case that parameters can be calculated and two-stage least squares (2SLS), indirect least squares (ILS),
three-stage least squares (3SLS) or maximum likelihood (ML) are the most commonly estimation
methods [19].

The preceding distributional assumptions about the structural disturbances involve that error
terms may be contemporaneously correlated but are intertemporally uncorrelated. Nevertheless,
the property that characterizes clustered data is the intraclass correlation and in the presence
of that type of data structure, we cannot assert that the random terms of the system are
intertemporally uncorrelated. Thus, we can hardly expect to obtain parameter estimates having
desirable properties. In such case, the estimation techniques fail and it is necessary to establish
alternative methods that provide at least consistent, unbiased and possibly efficient estimators.

3. Multilevel Simultaneous Equation Model

3.1. Definition of the Model

Consider a general simultaneous equation model specified as in (1) with observed data clustered
into l independent groups

Yj = Yj A + XjB + Ej j = 1, ..., l independent groups (5)
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where Yj, Xj denote the observations of endogenous and predetermined variables in group j and Ej the
matrix of structural disturbances of the system in group j. Note that A, B are the same for all groups
assuming that the observed data are generated by a single set of parameter values representing a
unique structural model.

As it is well known, if groupings are ignored during the estimation process, one runs the risk of
drawing erroneous statistical conclusions. Typically, multilevel models would be used to allow for
data organized into groups, but these models are not designed to deal with endogenous variables.
One option is to modify simultaneous equation model distributional assumptions so that error terms
can be serially dependent, thereby taking into account data correlation within groups. This point and
the fact that A and B are the same across groups will differentiate this proposal from previous research
approaches when handling heterogeneity in simultaneous equation models framework.

The matrix normal distribution [20] incorporates an among-row and among-column covariance
matrix structure that has motivated the development of a novel multivariate approach referred as to
Multilevel Simultaneous Equation Model (MSEM) [12]. This separable variance-covariance patterned
matrix appears to be adequate for the double objective targeted in this work and will be considered in
the error terms distribution.

For model (5), imposing the condition that each group has the same number of units, n, we assume
that error terms follow a matrix normal distribution

Ej ∼ Nn,m(0, U, Σ) j = 1, ..., l (6)

where 0 (n×m) is the mean of the distribution and U (n× n) and Σ (m×m) are symmetric positive
definite matrices specifying the covariance between units of the same group and the covariance
between variables, i.e., the temporal and contemporaneous correlation, respectively (note that the
condition of equal number of units in all groups let us suppose that the U covariance matrix is common
across groups).

Applying some basic properties to express the values of the endogenous variables in the
reduced form

Yj = XjB(I − A)−1 + Ej(I − A)−1 and Wj = Ej(I − A)−1 (7)

we have that,
Wj ∼ N(0, U, ((I − A)−1)TΣ(I − A)−1) j = 1, ..., l (8)

Therefore, replacing Wj by the observable quantities Yj−XjB(I− A)−1, the matrix normal density
function is

f j(Wj) = c−1exp
[
−1

2
tr
(

U−1(Yj(I − A)− XjB)Σ−1(Yj(I − A)− XjB)T
)]

(9)

with c = (2π)nm/2|U|m/2|((I − A)−1)TΣ(I − A)−1|n/2.

3.2. Maximum Likelihood Estimation

Given the above distributional assumptions, the log-likelihood function for a random sample of l
independent and identically distributed (i.i.d.) groups is

L(A, B, U, Σ) =− nml
2

ln(2π)− ml
2

ln|U| − nl
2

ln|((I − A)−1)TΣ(I − A)−1|

− 1
2

l

∑
j=1

tr
(

U−1(Yj(I − A)− XjB)Σ−1(Yj(I − A)− XjB)T
) (10)

The problem is to maximize L with respect to the parameters A, B, U and Σ given the sample data
(Xj, Yj) (j = 1, ..., l) and a fixed number of groups l.
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Applying matrix derivatives [21–23], we obtain the system of likelihood equations:

∂L()
∂U

= −mlU−1 +
ml
2

diag(U−1) +
l

∑
j=1

(
U−1(Yj(I − A)− XjB)Σ−1(Yj(I − A)− XjB)TU−1

)
− 1

2

l

∑
j=1

diag
(

U−1(Yj(I − A)− XjB)Σ−1(Yj(I − A)− XjB)TU−1
)
= 0 (11)

∂L()
∂Σ

= −nlΣ−1 +
nl
2

diag(Σ−1) +
l

∑
j=1

(
Σ−1(Yj(I − A)− XjB)TU−1(Yj(I − A)− XjB)Σ−1

)
− 1

2

l

∑
j=1

diag
(

Σ−1(Yj(I − A)− XjB)TU−1(Yj(I − A)− XjB)Σ−1
)
= 0 (12)

∂L()
∂B

=
l

∑
j=1

(XT
j U−1Yj)(I − A)Σ−1 −

l

∑
j=1

(XT
j U−1Xj)BΣ−1 = 0 (13)

∂L()
∂(I − A)

= nl((I − A)−1)T −
l

∑
j=1

(YT
j U−1Yj(I − A)Σ−1 −YT

j U−1XjBΣ−1) = 0 (14)

The maximum likelihood estimator (MLE) is defined as the global maximum of the (log)-likelihood
function. The usual method to calculate this estimator involves solving the system of likelihood
equations described above by setting each derivative equal to zero. Unfortunately, in this case the
system has not a closed solution and it is not possible to isolate all the unknown parameters implicated.

4. A Genetic Algorithm for MSEM Estimation

The maximization of the log-likelihood function requires the resolution of a nonlinear system
of equations that implies cumbersome calculations. In the absence of a closed analytical solution,
the computational cost of completely exploring the space of solutions using exhaustive search
procedures makes this option operationally unfeasible. As an alternative, the method here suggested
for finding the MLE is to use a hybrid metaheuristic technique, which consists of an optimized genetic
algorithm. This implementation is able to improve the solution provided by the genetic algorithm by
computing the R general-purpose optimization function nlm from the stats package.

This section outlines the genetic algorithm programmed for estimating the multilevel
simultaneous equation model (MSEM), which is described as follows. A population of chromosomes
composed of multiple sets of parameters A, B, U and Σ is explored. Each chromosome determines
an initial solution for the MSEM and represents a candidate for the MLE. The population is updated
in the crossover and it can be enhanced by using an optimization solver in two different points of
the algorithm. First, it can be randomly improved after the mutation function and secondly, once the
genetic algorithm has concluded, a predefined set of chromosomes from among the fittest ones will be
also optimized. The fitness of a chromosome is calculated evaluating the maximum likelihood function.
The general scheme of a genetic algorithm is used (Algorithm 1) and its functions and parameters are
described in detail hereunder.

4.1. Initialization and End Conditions

The initial population is randomly created and the population size (PopSize) is stated at
the beginning. The generational process in the metaheuristic is repeated until it accomplishes
the end condition. Namely, the algorithm stops when it reaches the maximum number of
iterations (MaxIter), which will be studied for different predefined values.
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4.2. Evaluating a Chromosome and Selecting the Best Ranking

The fitness value of each chromosome is calculated using Equation (10). For the selection of the
fittest individuals, a benchmark set of chromosomes (BenchSet) composed of the individuals with
higher fitness score is included. In each generation, a comparison of the evaluations of all chromosomes
in the population is made and the benchmark set is updated removing those individuals with lower
fitness value.

4.3. Crossover

In each iteration a proportion of the existing population is selected to breed a new generation and
only a preset number of the individuals in the best ranking of the benchmark set will be chosen for
reproduction (RepSize).

The individuals selected from the set of chromosomes to produce offspring are randomly paired
in CrossSize couples, so that the same chromosome can be picked more than once and can be matched
with multiple couples. Each pair of ascendent chromosomes (ascendent1 and ascendent2) will produce
a new solution or descendent. The number of chromosomes that are created in each generation
(CrossSize) is also a prespecified parameter.

Different methods can be used to combine the ascendents. In this work, the new individual
inherits each of the matrices of parameters A, B, U or Σ completely from one of the ascendents.
Therefore, for each new chromosome, a binary code randomly decides if a matrix is inherited from
ascendent1 encoded with 1 or the ascendent2 encoded with 0.

4.4. Mutation

In each iteration, a small probability of mutation denoted by Pmut is considered. The mutation will
only affect the elements of the diagonal of the covariance matrices U or Σ. If a chromosome from the
new offspring is randomly chosen for mutation, all elements in the diagonal of any of these matrices
will be subjected to mutation jointly by changing their numerical values.

4.5. Chromosomes Improvement

After mutation, a percentage of the descendent chromosomes is randomly chosen to be improved
with a probability called Pimp. An optimization solver is included in the algorithm so that the new
chromosomes can increment their quality to survive. The solver uses the selected chromosome as
initial solution for maximizing the likelihood function (10). If it finds a better set of parameters for the
model being estimated, the descendent chromosome is updated. If not, the chromosome remains equal.

Finally, once the descendents have been subjected to mutation and improvement, they can
become part of the benchmark set. Each descendent is evaluated and the benchmark set is reordered
considering these newly chromosomes. If the fitness score of a descendent is higher than any of
the individuals in the benchmark set, the descendent will be included in the benchmark set in the
corresponding position determined by its fitness value and the chromosome on the bottom of the
ranking will be eliminated.

4.6. Optimization

Once the genetic algorithm has finished, the programme includes again a call to the
optimization solver. In this step, a fixed number of the best ranked chromosomes (OptSize) is selected
to be optimized. As described before, the chosen chromosomes are used as initial solutions by the
solver and the fitness values of the resulting optimized chromosomes are calculated. Lastly, these
scores are compared and the final solution shown by the metaheuristic corresponds to the parameters
stored in the fittest individual. This step guarantees the search of a better final solution starting from a
valid good one.
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Algorithm 1: Parameterized schema for the hybrid metaheuristic
Initialize(ParamIni) −→ S_ini
Computefitness(S_ini, ParamIni)
Select(S_ini, ParamSelIni) −→ S_re f
while not EndCondition(S_ref, ParamEndCon) do

Select(S_ref, ParamSel) −→ S_sel
Combine(S_sel, ParamCom) −→ S_com
Mutate(S_com, ParamMut) −→ S_mut
Improve(S_com, S_mut, ParamImp) −→ S_imp_com, S_imp_mut
Computefitness(S_com, S_mut, S_imp_com, S_imp_mut, ParamCom)
Include(S_com, S_mut, S_imp_com, S_imp_mut, S_ref, ParamInc) −→ S_re f

end while
Improve(S_ref, ParamImpPost) −→ S_opt
Select(S_opt, ParamSelBest)

5. Experiment Results

Experiments have been executed in a DELL PowerEdge R730 node with 2 Intel(R) Xeon(R)
CPU E5-2650 v3 @ 2.30 GHz, with 20 cores (40 threads) at 2.4 GHz and 25 MB SmartCache memory.
Tests were carried out in C code importing the nlm optimization function from statistical software R
(GNU R version 3.5.2).

In the following simulations, some parameters have been fixed to predefined values. The initial
population, PopSize, is integrated by 300 chromosomes and in each generation, a benchmark set,
BenchSet, of 100 chromosomes is considered. The number of individuals selected from the benchmark
set to be used in the crossover is RepSize = 20 and in each generation, CrossSize = 25 new chromosomes
are created with a probability of mutation of 25 percent.

The rest of the parameters of the metaheuristic are studied experimentally. Table 1 reports the
fitness provided by the algorithm for different values of the tuning parameters when estimating a
medium size MSEM problem. Specifically, Alg.Prev denotes the fitness returned by the metaheuristic
before entering in the optimization step 4.6, while Alg.End designates the fitness of a solution after
the optimization is accomplished, if applicable. The cost of the algorithm measured in seconds is also
presented. Likewise, Prev express the time spent by the procedure before entering in the optimization
step and Post the time after this step is fulfiled.

Table 1. Average fitness and run time (over 10 simulation runs) for different parameters configuration
of the hybrid metaheuristic.

Mode Fitness Time

MaxIter OptSize Pimp Alg.Prev Alg.End Prev Post

10 0 0 −16,726.56 −16,726.56 0.32 0.32
50 0 0 −12,005.68 −12,005.68 0.90 0.90
100 0 0 −12,028.44 −12,028.44 1.60 1.60

10 10 0 −17,927.11 −10,568.38 0.32 1751.52
50 10 0 −12,098.04 −10,346.21 0.90 1732.36
100 10 0 −11,753.68 −10,319.02 1.60 1739.39

10 0 10 −9944.31 −9944.31 3663.19 3663.19
50 0 10 −8949.24 −8949.24 17,441.91 17,441.91
100 0 10 −8488.46 −8488.46 33,893.78 33,893.78

10 10 5 −10,364.71 −9992.68 2024.01 3776.39
50 10 5 −8814.78 −8756.06 8983.55 10,519.69
100 10 5 −8953.06 −8838.36 17,051.52 18,454.82
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From the results, the rest of the parameters of the hybrid metaheuristic are henceforth established
as follows. The probability of improvement, Pimp, is fixed to 5% in each iteration. The number of
chromosomes to be optimized at the end of the genetic algorithm from among those ranked in the top
of the benchmark set, OptSize, is fixed to 10. Note that the combination Pimp = 0 and OptSize = 0
corresponds to a standard genetic algorithm. The generational process is repeated until the end
condition is reached, MaxIter = 10. Figure 1 summarises the iterative process and the parameters
values eventually selected in each step of the hybrid metaheuristic which will be used to obtain
the MLE.

The analysis in Table 1 indicates that including the call to the nlm function after mutation (Pimp 6= 0)
or at the end of the process (OptSize 6= 0) outperforms in either case the standard genetic algorithm
fitness value, as can be seen in column Alg.End. The results also suggest that inserting the optimization
after the mutation function (Pimp = 10 and OptSize = 0) has a higher positive impact than just
optimizing the fittest individuals at the end of the metaheuristic (Pimp = 0 and OptSize = 10). In fact,
this last option does not provide a substantial improvement with regard to a basic genetic algorithm.
Moreover, the simulation study illustrates that there is no significant difference between implementing
the solver only after mutation and applying both optimizations (Pimp = 5 and OptSize = 10). However,
we consider this last configuration a more complete choice since it would allow for at least a minimal
enhancement involving a negligible cost in time. On the other hand, for any of the versions of the
optimized genetic algorithm, it appears that the different values for the maximum number of iterations
provide similar fitness scores. In contrast, the computer time speeds up as the number of iterations
increases and leads us to choose MaxIter = 10 as end condition.

Figure 1. Hybrid genetic algorithm scheme.

Once parameters have been established according to evidences in Table 1, Table 2 shows the
experiment outcomes for the hybrid metaheuristic developed in this work. In all experiments,
the MSEM was codified so as to satisfy the order condition, thereby ensuring the estimation of
the model. Henceforth, we shall assume that the MSEM is identified. The values of the chromosomes
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which constitute the entry of the algorithm for the coefficient matrices A and B are, in half of the cases,
2SLS estimates of A and B with a variability from 0% to 0.75%. In the other half, A and B initial entries
are selected randomly from the solution space. Although 2SLS method is not designed to deal with
temporally correlated observations, 2SLS estimates offer a convenient starting solution for the search
algorithm while the variability allows to expand the exploring in the solution space. In this way,
we seek to reduce the algorithm dependence on good initial values and speed up the convergence.
The starting values for U and Σ are generated randomly in such a way that symmetric positive definite
matrices are guaranteed.

Finally, the performance of the hybrid metaheuristic has been examined regarding other
estimation methods. The results are compared in terms of fitness, time and accuracy with two-stage
least squares (2SLS) and a standard genetic algorithm (GA) with a maximum number of iterations
of 10,000 which does not include a call to the nlm optimization function. The former method is
the one commonly used in simultaneous equation models, which do not allow for intertemporally
correlated error terms. Thus, using 2SLS in the MSEM case would involve an estimation bias. It is
worth investigating the evolution of 2SLS estimates as the temporal correlation becomes significant.
On the other hand, genetic algorithms are customary heuristics widely used in optimization and
search problems when exact solutions are necessarily computationally expensive. Heuristics can
provide an approximate solution individually or be used as a good baseline to be supplemented with
an optimization procedure. This last case is the one considered in the hybrid metaheuristic. Hence,
it is interesting to study whether or not the proposed optimized genetic algorithm produces better
estimates than a standard genetic algorithm individually (even if a large number of iterations are
permitted in the GA when used individually).

Three different values for endogenous and exogenous variables have been considered.
Whatever the MSEM size, the number of groups is l = 5 and the number of observations in each
group is n = 30. In addition, the covariance matrix U has been adjusted for five different ranges
of values by dividing the generation interval by λ = 100, 10, 1, 0.1 and 0.01. Note that dividing
the generation interval by λ = 1 returns the original range for the entries of U. For each model
configuration of parameters size (m k l n) and λ, we have simulated five different models and each
of them has been estimated in two different ways using whether the hybrid version or the simple
genetic algorithm mentioned above. The exogenous variables have been simulated following a matrix
normal distribution. The endogenous variables have been calculated using Equation (7), with the error
disturbances Ej generated by using the property stated in Arnold [20]:

If Zj = (zst) denotes an n×m random matrix with zst (s = 1, ..., n; t = 1, ..., m) i.i.d. N(0, 1), then

Ej = U1/2ZjΣ1/2 ∼ Nn,m(0, U, Σ) j = 1, ..., l

On the basis of the experimental results, the fitness value of the likelihood function obtained either
by the hybrid metaheuristic (FHM) or by the standard genetic algorithm (FGA) always outperforms 2SLS
fitness score (F2SLS). In addition, the fitness value of the likelihood function obtained by combining the
metaheuristic with an optimization procedure clearly enhances the likelihood value achieved by using
only the genetic algorithm. Therefore, the solving method proposed in the hybrid version improves
the fitness over any of the other alternative procedures.

To assess the accuracy of the different estimation methods, the Frobenius norm between observed
data Y and fitted values Ŷ is calculated. Interestingly, 2SLS shows better results for small values of U,
but as the range of values of U augments, the hybrid metaheuristic improves 2SLS whatever the MSEM
size is. Nevertheless, this finding does not occur when using a standard genetic algorithm. In this case,
2SLS always produces better estimates than the genetic algorithm, with just one exception (size 15 20 5
30 and λ = 0.1).
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Table 2. Average results for fitness, run time and accuracy (over 5 simulation runs) of different
estimation methods.

Size λ FHM FGA F2SLS S.prev S.post SGA ||Y − ŶHM || ||Y − ŶGA|| ||Y − Ŷ2SLS||

8 12 5 30

100 −3163.36 −3635.03 −411,983.91 434.99 922.77 57.25 537.39 116.48 89.19
10 −3811.79 −4440.59 −57,824.25 584.70 1087.31 59.51 559.08 302.24 280.04
1 −4094.60 −5748.64 −34,293.66 504.84 976.59 59.57 1123.97 948.76 899.87

0.1 −7248.25 −10,943.99 −48,767,714.85 522.52 1030.72 59.67 2264.33 2658.97 2596.77
0.01 −10,069.02 −61,501.99 −881,112.47 507.95 1008.34 59.51 7696.10 8519.65 8368.07

15 20 5 30

100 −7341.87 −8668.81 −141,301.20 1894.89 3680.11 142.04 1270.48 408.67 186.20
10 −8411.78 −10,104.22 −7,104,505.59 1781.75 3547.47 141.76 1464.06 841.10 608.62
1 −11,014.00 −12,694.56 −1,283,916.42 2310.64 4140.55 136.27 2563.91 2433.26 2076.20

0.1 −12,097.40 −22,999.82 −327,573.88 2188.60 3900.75 127.63 5406.90 6179.77 6306.63
0.01 −47455.24 −170,551.28 −21,252,787.68 1346.84 3189.38 130.23 14,815.85 20,587.63 18,881.66

22 28 5 30

100 −14,003.91 −16,217.86 −3,125,727.39 3851.21 8308.45 270.85 3922.10 2720.13 344.21
10 −14,556.42 −17,178.54 −2,558,133.93 5222.54 9589.12 270.27 2274.98 2417.81 917.13
1 −20,391.21 −28,325.12 −6,585,294.85 5454.31 9287.51 271.69 4343.76 5204.45 3823.36

0.1 −22,702.70 −33,346.31 −18,947,400.33 3153.00 7526.67 270.77 8860.07 10,557.65 9396.87
0.01 −48,689.37 −327,171.61 −15,177,293.12 5968.90 10,372.43 271.31 31,943.36 42,114.08 36,997.67

If one compares the norm of both algorithms, for small and medium MSEM problems (i.e., sizes
8 12 5 30 and 15 20 5 30), the hybrid metaheuristic performs better than the standard genetic algorithm
for large values of U, in particular, λ = 0.1 and 0.01. However, for a big MSEM size i.e., size 22 28 5 30),
our algorithm becomes a better estimation method than a standard genetic algorithm even for small
values of U. This comparison also illustrates that whenever the hybrid technique improves 2SLS
estimates, it also enhances the standard genetic algorithm. Furthermore, it is worth highlighting
that when the proposed approach is presented as the best estimation option, an end condition of
MaxIter = 10 combined with a relatively small percentage of optimization is enough to outperform
a standard genetic algorithm with reasonably large number of iterations. This is remarkable since it
reinforces the choice of MaxIter tuning parameter from Table 1 and will contribute to alleviate the
computational cost.

In summary, these experiments lead to an important conclusion. Overall, 2SLS is a more
appropriate estimation method when the U values are small, that is to say, when the error terms
are serially uncorrelated (or at least the serial dependence is not very strong). However, as we
had postulated, our simulation experiments point out that this technique does not provide satisfactory
results when this assumption is violated. As the values of U become greater, the hybrid metaheuristic
arises as a preferable option to 2SLS. In that case, our algorithm works best even for a modest sample
size and reasonably large models.

Expectedly, as the size of the problem increases the execution time rises and the algorithm can be
computationally demanding. The cost of estimating a model is the sum of applying a genetic algorithm
and an optimization method. In particular, the last optimization step described in Section 4 originates
an evident time impact, as one can compare in the tables above. The time the algorithm needs before
entering in the final optimization (Sprev) and the total running time once the whole procedure has
finished (Spost) measured in seconds are displayed. In contrast, the time spent by the standard genetic
algorithm (SGA) is also indicated. The hybrid metaheuristic shows the highest execution times but
it provides the best outcomes. In addition, the time that the algorithm needs depends heavily on
the numerical procedure implemented in nlm for optimizing the likelihood of the system and on the
complexity of the fitness function.

6. Conclusions and Future Work

This paper proposes a metaheuristic strategy to estimate a multilevel simultaneous equation
model (MSEM) when the double covariance structure is unknown. A genetic algorithm is
combined with an optimization procedure in order to obtain the maximum likelihood estimator.
Different parameters have been experimentally tuned to reduce the complexity of the search space to a
more manageable one. However, further simulation studies are necessary to better inspect the space of
parameters and avoid falling in local optima.
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The simulation experiments suggest that this hybrid metaheuristic produces better outcomes
than other estimation methods such as 2SLS when error terms are not intertemporally uncorrelated.
According to the results, the algorithm provides satisfactory solutions when the system of likelihood
equations cannot be analytically solved and standard optimal procedures are not feasible to
implement. Although the hybrid metaheuristic leads to a more efficient inference, some aspects
require further analysis. Moreover, as future work extensions to non-normal error distributional forms
(e.g., matrix Student’s T distribution) need to be investigated.

Because of the computational burden, the simulation results reported above are limited.
The execution time grows as the size of the model increases and a parallel version of the algorithm
may be a preferable option. The development of a shared memory version may boost the efficiency
of processor usage reducing response times in the solution of the problem. Finally, other appealing
metaheuristic techniques (Scatter Search, GRASP...) need to be examined and alternative optimization
solvers must be explored.
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