Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/34218

Nonlinear estimators from ICA mixture models


no-thumbnailView/Open:

 1-s2.0-S0165168418303347-main.pdf



1,45 MB
Adobe PDF
Share:

This resource is restricted

Title:
Nonlinear estimators from ICA mixture models
Authors:
Safont, Gonzalo  
Salazar, Addisson  
Vergara, Luis
Rodríguez, Alberto
Editor:
Elsevier
Department:
Departamentos de la UMH::Ingeniería de Comunicaciones
Issue Date:
2018-10-05
URI:
https://hdl.handle.net/11000/34218
Abstract:
Independent Component Analyzers Mixture Models (ICAMM) are versatile and general models for a large variety of probability density functions. In this paper we assume ICAMM to derive new MAP and LMSE estimators. The first one (MAP-ICAMM) is obtained by an iterative gradient algorithm, while the second (LMSE-ICAMM) admits a closed-form solution. Both estimators can be combined by using LMSE-ICAMM to initialize the iterative computation of MAP-ICAMM .The new estimators are applied to the reconstruction of missed channels in EEG multichannel analysis. The experiments demonstrate the superiority of the new estimators with respect to: Spherical Splines, Hermite, Partial Least Squares, Support Vector Regression, and Random Forest Regression.
Keywords/Subjects:
ICA
Nonlinear estimators
LMSE
MAP
EEG reconstruction
non-Gaussian mixtures
Knowledge area:
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.1016/j.sigpro.2018.10.003
Appears in Collections:
Artículos Ingeniería Comunicaciones



Creative Commons ???jsp.display-item.text9???