Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/34218
Nonlinear estimators from ICA mixture models
View/Open: 1-s2.0-S0165168418303347-main.pdf
1,45 MB
Adobe PDF
Share:
This resource is restricted
Title: Nonlinear estimators from ICA mixture models |
Authors: Safont, Gonzalo Salazar, Addisson Vergara, Luis Rodríguez, Alberto |
Editor: Elsevier |
Department: Departamentos de la UMH::Ingeniería de Comunicaciones |
Issue Date: 2018-10-05 |
URI: https://hdl.handle.net/11000/34218 |
Abstract:
Independent Component Analyzers Mixture Models (ICAMM) are versatile and general models for a large
variety of probability density functions. In this paper we assume ICAMM to derive new MAP and LMSE
estimators. The first one (MAP-ICAMM) is obtained by an iterative gradient algorithm, while the second
(LMSE-ICAMM) admits a closed-form solution. Both estimators can be combined by using LMSE-ICAMM
to initialize the iterative computation of MAP-ICAMM .The new estimators are applied to the reconstruction of missed channels in EEG multichannel analysis. The experiments demonstrate the superiority of
the new estimators with respect to: Spherical Splines, Hermite, Partial Least Squares, Support Vector Regression, and Random Forest Regression.
|
Keywords/Subjects: ICA Nonlinear estimators LMSE MAP EEG reconstruction non-Gaussian mixtures |
Knowledge area: CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Type of document: info:eu-repo/semantics/article |
Access rights: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI: https://doi.org/10.1016/j.sigpro.2018.10.003 |
Appears in Collections: Artículos Ingeniería Comunicaciones
|
???jsp.display-item.text9???