Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34218
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSafont, Gonzalo-
dc.contributor.authorSalazar, Addisson-
dc.contributor.authorVergara, Luis-
dc.contributor.authorRodríguez, Alberto-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2025-01-08T09:47:18Z-
dc.date.available2025-01-08T09:47:18Z-
dc.date.created2018-10-05-
dc.identifier.citationSignal Processing, Volume 155, February 2019, Pages 281-286es_ES
dc.identifier.issn1872-7557-
dc.identifier.issn0165-1684-
dc.identifier.urihttps://hdl.handle.net/11000/34218-
dc.description.abstractIndependent Component Analyzers Mixture Models (ICAMM) are versatile and general models for a large variety of probability density functions. In this paper we assume ICAMM to derive new MAP and LMSE estimators. The first one (MAP-ICAMM) is obtained by an iterative gradient algorithm, while the second (LMSE-ICAMM) admits a closed-form solution. Both estimators can be combined by using LMSE-ICAMM to initialize the iterative computation of MAP-ICAMM .The new estimators are applied to the reconstruction of missed channels in EEG multichannel analysis. The experiments demonstrate the superiority of the new estimators with respect to: Spherical Splines, Hermite, Partial Least Squares, Support Vector Regression, and Random Forest Regression.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent6es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectICAes_ES
dc.subjectNonlinear estimatorses_ES
dc.subjectLMSEes_ES
dc.subjectMAPes_ES
dc.subjectEEG reconstructiones_ES
dc.subjectnon-Gaussian mixtureses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleNonlinear estimators from ICA mixture modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.sigpro.2018.10.003es_ES
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones


no-thumbnailVer/Abrir:

 1-s2.0-S0165168418303347-main.pdf



1,45 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.