Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34218
Nonlinear estimators from ICA mixture models
Ver/Abrir: 1-s2.0-S0165168418303347-main.pdf
1,45 MB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Nonlinear estimators from ICA mixture models |
Autor : Safont, Gonzalo Salazar, Addisson Vergara, Luis Rodríguez, Alberto |
Editor : Elsevier |
Departamento: Departamentos de la UMH::Ingeniería de Comunicaciones |
Fecha de publicación: 2018-10-05 |
URI : https://hdl.handle.net/11000/34218 |
Resumen :
Independent Component Analyzers Mixture Models (ICAMM) are versatile and general models for a large
variety of probability density functions. In this paper we assume ICAMM to derive new MAP and LMSE
estimators. The first one (MAP-ICAMM) is obtained by an iterative gradient algorithm, while the second
(LMSE-ICAMM) admits a closed-form solution. Both estimators can be combined by using LMSE-ICAMM
to initialize the iterative computation of MAP-ICAMM .The new estimators are applied to the reconstruction of missed channels in EEG multichannel analysis. The experiments demonstrate the superiority of
the new estimators with respect to: Spherical Splines, Hermite, Partial Least Squares, Support Vector Regression, and Random Forest Regression.
|
Palabras clave/Materias: ICA Nonlinear estimators LMSE MAP EEG reconstruction non-Gaussian mixtures |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1016/j.sigpro.2018.10.003 |
Aparece en las colecciones: Artículos Ingeniería Comunicaciones
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.