Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36863

Perceptual QP optimization for VVC with dual hybrid neural networks

Título :
Perceptual QP optimization for VVC with dual hybrid neural networks
Autor :
Ruiz Atencia, Javier
Lopez Granado, Otoniel
Pérez Malumbres, Manuel
Martínez-Rach, Miguel
Editor :
Springer
Departamento:
Departamentos de la UMH::Ingeniería de Computadores
Fecha de publicación:
2025
URI :
https://hdl.handle.net/11000/36863
Resumen :
This paper introduces a dual hybrid neural network model combining convolu- tional neural networks (CNNs) and artificial neural networks (ANNs) to optimize the quantization parameter (QP) for both 64 × 64 and 32 × 32 blocks in the versatile video coding (VVC) standard, enhancing video quality and compression efficiency. The model employs CNNs for spatial feature extraction and ANNs for structured data handling, addressing the limitations of current heuristic and just noticeable distortion (JND)-based methods. A dataset of luminance channel image blocks, encoded with various QP values, is generated and preprocessed, and the dual hybrid network structure is designed with convolutional and dense layers. The QP optimi- zation is applied at two levels: the 64 × 64 model provides a global QP offset, while the 32 × 32 model refines the QP for further partitioned blocks. Performance evalu- ations using model error metrics like mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), as well as perceptual metrics like weighted PSNR (WPSNR), MS-SSIM, PSNR-HVS-M, and VMAF, demonstrate the model’s effectiveness. While our approach performs competitively with state-of-the- art algorithms, it significantly outperforms in VMAF, the most advanced and widely adopted perceptual quality metric. Furthermore, the dual-model approach yields bet- ter results at lower resolutions, whereas the single-model approach is more effective at higher resolutions. These results highlight the adaptability of the proposed mod- els, offering improvements in both compression efficiency and perceptual quality, making them highly suitable for practical applications in modern video coding.
Palabras clave/Materias:
Hybrid network
CNN
Perceptual
QP
VVC
AdaptiveQP
QPA
HVS
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1007/s11227-025-06954-z
Publicado en:
The Journal of Supercomputing (2025) 81:464
Aparece en las colecciones:
Artículos Ingeniería de computadores



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.