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Abstract
This paper introduces a dual hybrid neural network model combining convolu-
tional neural networks (CNNs) and artificial neural networks (ANNs) to optimize 
the quantization parameter (QP) for both 64 × 64 and 32 × 32 blocks in the versatile 
video coding (VVC) standard, enhancing video quality and compression efficiency. 
The model employs CNNs for spatial feature extraction and ANNs for structured 
data handling, addressing the limitations of current heuristic and just noticeable 
distortion (JND)-based methods. A dataset of luminance channel image blocks, 
encoded with various QP values, is generated and preprocessed, and the dual hybrid 
network structure is designed with convolutional and dense layers. The QP optimi-
zation is applied at two levels: the 64 × 64 model provides a global QP offset, while 
the 32 × 32 model refines the QP for further partitioned blocks. Performance evalu-
ations using model error metrics like mean squared error (MSE), root mean squared 
error (RMSE), mean absolute error (MAE), as well as perceptual metrics like 
weighted PSNR (WPSNR), MS-SSIM, PSNR-HVS-M, and VMAF, demonstrate the 
model’s effectiveness. While our approach performs competitively with state-of-the-
art algorithms, it significantly outperforms in VMAF, the most advanced and widely 
adopted perceptual quality metric. Furthermore, the dual-model approach yields bet-
ter results at lower resolutions, whereas the single-model approach is more effective 
at higher resolutions. These results highlight the adaptability of the proposed mod-
els, offering improvements in both compression efficiency and perceptual quality, 
making them highly suitable for practical applications in modern video coding.
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1 Introduction

In today’s digital age, the surge of high-quality video content has become more 
apparent than ever, driven by widespread streaming services, social media plat-
forms, and various multimedia applications. Videos are produced, uploaded, and 
consumed in massive volumes across networks that are still bound by bandwidth 
constraints. This scenario, combined with the rapid evolution of resolutions-from 
full HD to 4K and beyond-further underscores the need for advanced video com-
pression strategies. Effective video compression not only saves storage space but 
also ensures smooth video delivery over bandwidth-limited networks. Consequently, 
the research and development of new techniques to improve compression efficiency 
without compromising perceived video quality has become a central focus in the 
field of video coding.

Among the most recent advances in compression technology is the versatile 
video coding (VVC) standard [1], also known as H.266. Building upon the success 
of its predecessors (H.264/AVC and H.265/HEVC), VVC typically achieves the 
same subjective video quality at around half the bit rate compared to earlier stand-
ards. While these advancements are substantial, challenges remain. One of the most 
critical tasks in any video codec is selecting the quantization parameter (QP), which 
directly influences the trade-off between bit rate and visual quality at the block level. 
Inappropriate QP assignments across different spatial regions can lead to noticeable 
distortions and/or inefficient use of bits.

Several strategies have been proposed to address this challenge. Traditional 
approaches rely on heuristic rules or basic visual sensitivity metrics for perceptual 
optimization. For instance, JND-based (just noticeable distortion) methods lever-
age fundamental insights into the human visual system (HVS) to dynamically adjust 
the QP such that distortions remain below the typical detection thresholds of human 
observers. However, conventional JND schemes and even the sophisticated refer-
ence algorithms in VVC’s test model (VTM) [2], such as AdaptiveQP [3, 4] and 
quantization parameter adaptation (QPA) [5], are still limited by their reliance on 
fixed rules and predefined sensitivity metrics. As a result, they may not fully exploit 
the complex interactions between spatial content, motion, and human perception in 
diverse video sequences.

To bridge this gap, our work introduces a novel dual hybrid neural network 
framework that integrates convolutional neural networks (CNNs) for extracting spa-
tial features from video blocks and artificial neural networks (ANNs) for structured 
data processing. By harnessing the unique advantages of these two architectures, our 
model refines the QP assignment for both 64 × 64 and 32 × 32 blocks in VVC, seek-
ing to deliver competitive compression ratios while maximizing perceptual quality 
metrics such as WPSNR, MS-SSIM, PSNR-HVS-M, and especially VMAF.

The remainder of this paper is organized as follows. Section 2 presents the state-
of-the-art approaches in rate control and perceptual QP optimization, highlight-
ing both traditional methods and recent neural-network-based solutions. Section 3 
details our methodology, including dataset preprocessing and our dual-model archi-
tecture. Section 4 reports experimental results and provides a comparative analysis 
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with existing methods. Finally, Sect.  5 concludes the paper and points to future 
research directions.

2  Related work

In VVC, AdaptiveQP [3, 4] and QPA [5] stand out as built-in perceptual mecha-
nisms in VTM. AdaptiveQP uses local variance in luminance blocks to increase QP 
in highly textured regions, leveraging the masking effect where noise or artifacts 
can be concealed by high detail. QPA goes further, estimating a QP offset at both 
the CTU ( 128 × 128 ) and CU ( 64 × 64 ) levels. Despite their effectiveness, their heu-
ristics do not necessarily capture complex motion or perception-related phenomena 
(e.g., occlusions, fast scene changes, or local object details).

Just noticeable distortion (JND) methods have also been integrated into many 
codecs to better mimic the HVS [6], indicating that some distortions remain imper-
ceptible in areas with higher texture or in the presence of luminance masking. In 
HEVC, for example, researchers proposed JND-based rate control schemes that 
attempt to distribute bits more intelligently across frames and regions [7–10]. Zhou 
et al. [11] introduced a JND-based perceptual rate control approach that mathemati-
cally models the relationship between JND factors and allocated bits, demonstrating 
notable improvements in subjective quality. These approaches underscore the impor-
tance of accounting for human perception to achieve higher coding efficiency, yet 
they often rely on hand-crafted or semi-empirical models of visual sensitivity.

Machine learning (ML) and deep learning (DL) have become increasingly promi-
nent in video coding research, as they can learn complex mappings between video 
features and optimal encoding decisions without relying solely on predefined or 
piecewise functions. Particularly in rate control, deep reinforcement learning (DRL) 
has gained traction for dynamic video sequences, where spatio-temporal content 
shifts rapidly and conventional prediction models fail. Zhou et  al. [12] proposed 
a DRL-based rate control method for HEVC to minimize distortion, buffer under-
flows/overflows, and quality fluctuations in scenes containing fast motion, occlu-
sions, or abrupt changes. This technique models rate control as a Markov decision 
process (MDP), allowing the learned agent to adapt QP selection at both frame and 
CTU levels.

Other recent works emphasize global optimization with advanced rate-distortion 
(R-D) models. For example, in [13], a decision-tree-based scheme for VVC UHD 
coding was proposed, coupling R-D modeling with visual features to refine bit allo-
cation in ultrahigh-resolution videos. A relevant concept is the shift from pixel- or 
block-based fidelity metrics to more perceptually aligned measures like SSIM or 
VMAF. Zhou et al., in another study [14], tackled SSIM-based global optimization 
for CTU-level rate control, casting bit allocation into a convex optimization prob-
lem and demonstrating the potential for higher perceptual quality gains over stand-
ard �-domain approaches. Moreover, Wei et al. provided a comprehensive review of 
state-of-the-art rate control [15], illustrating how R − � modeling, R − Q modeling, 
and ML-based methods each have their own set of advantages and challenges.
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Notably, rate control is essential for balancing bit rate usage and video qual-
ity under practical network constraints. Historically, solutions such as TM5 
for MPEG-2 [16] and VM8 for MPEG-4 [17] employed empirical or polyno-
mial models to predict bit rate-distortion trade-offs. In H.264/AVC and H.265/
HEVC, more advanced approaches like JVT-G012 [18] and JCTVC-H0213 [19] 
appeared, either applying R − Q relationships or resorting to �-domain models, 
respectively, to derive quantization parameters. Although these methods sub-
stantially improved rate-distortion performance, they commonly rely on simplis-
tic assumptions about how spatial detail and motion complexity affect perceived 
quality.

While each of the aforementioned strategies brings valuable insights into rate 
control and QP optimization, they either focus on a single scale (e.g., CTU-level 
adaptation) or rely heavily on handcrafted metrics and specific assumptions. Our 
proposed dual hybrid neural network addresses these limitations by integrating: 

1. Spatial feature extraction via CNNs: Convolutional layers capture detailed spatial 
patterns (textures, edges, etc.) that can guide QP decisions based on local com-
plexity and perceptual sensitivity.

2. Structured data handling via ANNs: Additional block-level statistics and encoder-
side features (e.g., motion vectors, coding cost, or variance measures) are pro-
cessed in fully connected layers, allowing the model to fuse numeric and visual 
cues.

3. Two-stage modeling: We explore two operating modes for QP optimization. In the 
first, we apply a QP offset solely at the 64 × 64 block level. In the second, the QP 
offset determined for the 64 × 64 block is further refined at the 32 × 32 block level. 
This hierarchical approach allows us to compare a single-scale offset application 
with a more fine-grained adaptation that handles local variations more precisely.

4. Comprehensive evaluation: Our framework is validated against multiple per-
ceptual quality metrics (WPSNR, MS-SSIM, PSNR-HVS-M, VMAF), with a 
particular focus on VMAF, which correlates more strongly with human visual 
perception than classic metrics like PSNR.

Thus, we extend existing literature by creating a robust pipeline that merges neu-
ral feature extraction with structured data modeling to realize efficient and per-
ceptually guided QP optimization for VVC.

3  Methodology

This section details the methodology used for designing and evaluating the pro-
posed hybrid model. First, the generation and preprocessing of the dataset con-
sisting of 64 × 64 and 32 × 32 pixel image blocks using the luminance channel are 
described. Next, the architecture of the hybrid neural network, which integrates a 
convolutional neural network (CNN) for image processing and an artificial neural 



Perceptual QP optimization for VVC with dual hybrid neural… Page 5 of 21   464 

network (ANN) for handling structured data, is presented. Finally, the normaliza-
tion and preprocessing techniques applied to the data before being fed into the 
neural network are explained.

3.1  Dataset preparation

A dataset of 64 × 64 and 32 × 32 pixel image blocks, using only the luminance 
channel, has been developed. This dataset is designed to train and evaluate a hybrid 
convolutional neural network model. The block datasets were extracted from some 
image databases like ESPL synthetic image database [20], USC-SIPI image data-
base [21], TESTIMAGE [22] and Kodak image dataset [23] as well as from some 
images randomly selected from the video sequences of VVC common test condi-
tions [24].

For dataset generation, the VVC reference software, known as VTM [2], was 
used and modified to partition the video exclusively into square blocks of 64 × 64 
and 32 × 32 pixels and store them into a CSV (comma-separated values) file. Each 
video sequence was encoded in All-intra mode, with a wide range of QP values from 
12 to 47. This value is stored in the dataset as QPbase and will be one of the input ele-
ments to the neural networks.

While the VVC standard allows the use of QP offsets at smaller block sizes (e.g., 
16 × 16 or 8 × 8 ), preliminary tests indicate that the additional overhead in the bit-
stream significantly diminishes any rate-distortion benefits. Hence, we chose not to 
include blocks smaller than 32 × 32 in our approach.

During the encoding process, each frame is partitioned into 64 × 64 and 32 × 32 
blocks, and rate-distortion optimization (RDO) is used to decide how to encode in 
a way that minimizes visual distortion (i.e., loss of quality) while controlling the 
amount of data needed to represent that block (i.e., bitrate). This cost function is 
mathematically formalized as follows:

where DSSE
k

 denotes the sum of squared errors (SSE) for a block Bk , Rk(pk) is the 
rate for a block Bk , � is the lagrange multiplier, which depends on the QP value, and 
pk is the vector of encoding decisions for the block Bk.

At this stage, further modifications were made to the VTM reference software. In 
the RDO, a weighted SSE distortion metric based on the WPSNR (weighted peak 
signal-to-noise ratio) [5] was used instead of the conventional SSE distortion meas-
ure. Therefore, Eq. (1) is modified as follows:

where wk is the weighting factor for a Bk . In addition, a process of searching for 
the perceptually optimal QP value has been conducted. For this purpose, we have 
added a new stage to the encoding process that allows us to use a range of QP val-
ues around the QPbase . The variable that controls this QP offset is called Delta QP 
( ΔQP ), and it is defined as:

(1)min
pk

DSSE
k

(pk) + � ⋅ Rk(pk)

(2)min
pk

wk ⋅ D
SSE
k

(pk) + � ⋅ Rk(pk)
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This means that, for each block, a total of thirteen different QP values are evalu-
ated. For each of these encodings, the weighted RDO is performed (Eq. 2), and after 
all the encoding processes, the ΔQP value that minimizes the cost of the RDO is 
considered the ground truth and is stored in the dataset, along with the block pixels 
in the luminance channel. Figure 1 summarizes the entire process described for a 
given QPbase value.

In addition to the QP base and blocks per frame (BPF) data, we have expanded 
the structured data inputs for the ANN with additional features derived from the 
mean directional variance (MDV) metric proposed by Ruiz-Coll et  al. [25]. The 
MDV provides a 12-element vector for each image block, capturing local directional 
variance. These vectors are crucial in analyzing the texture of video blocks and pro-
vide insight into the spatial complexity of the content. To illustrate that, we have 
selected four 64 × 64 image blocks and their associated polar diagram of the MDV 
metric, as shown in Fig. 2. As can be seen, the MDV metric, represented as a polar 
diagram, perfectly captures the image directivity. For example, in Fig.  2b and f, 

(3)ΔQP ∈ {−6,−5,… , 5, 6}

Fig. 1  Flow chart of image 
database extraction
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there is a minimum present in the direction of the most important axis in the image. 
However, in Fig. 2a and f, there is no minimum present, indicating that the image is 
either smooth or contains homogeneous texture.

Rather than using the MDV data to classify blocks into plain, edge, or texture 
categories, as in [26], we have extracted statistical measures from the MDV vec-
tor to enhance the learning process of our network. Specifically, for each block, we 
calculate the minimum, maximum, mean, and variance of the MDV vector elements. 
These statistical values are then stored in a CSV as additional structured inputs 
to the ANN. This approach allows the network to utilize richer, more informative 
structured data, facilitating improved predictions of QP offsets. By incorporating 
this additional information, the network is better equipped to converge on an optimal 
solution, particularly in cases where the block exhibits complex textures or direc-
tional patterns.

After processing the CSV, the dataset is stored in a pandas DataFrame (Python) 
with the following columns and data types:

• QP_base (int): Initial quantization parameter value.
• QP_delta (int): Optimal ΔQP value for the block.
• BPF (float): Number of blocks per frame. This is needed because the WPSNR 

metric is frame-size dependent.
• minMDV (float): Minimum MDV value.
• maxMDV (float): Maximum MDV value.
• meanMDV (float): Mean MDV value.
• varMDV (float): Variance of MDV values.
• pix_xxxx (int): Luminance value of the pixel xxxx.

In Table 1, we present the structured dataset corresponding to the example blocks 
presented in Fig. 2. These examples demonstrate the diversity in the block character-
istics, such as ΔQP and MDV statistic values.

Fig. 2  Example of four 64 × 64 image blocks and their corresponding MDV polar diagrams. The left side 
of each pair shows the image block, while the right side depicts the polar diagram representing the MDV 
values. These diagrams illustrate the distribution of local directional variance across twelve angular seg-
ments
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3.2  Hybrid neural network proposal

We propose two independent hybrid neural networks: one dedicated to processing 
64 × 64 blocks and another for 32 × 32 blocks. This approach simplifies the archi-
tecture while allowing for the independent optimization of hyperparameters for each 
block size. The decision to implement separate networks for each block size arose 
from experimental results showing that resizing smaller blocks ( 32 × 32 ) to match 
the input size of the original 64 × 64 network yielded lower performance, both in 
terms of prediction accuracy and generalization. A network has not been developed 
for 128 × 128 blocks, because in the RDO process in VVC encoding, the maximum 
size of the transform is 64 × 64 , and this does not allow us to obtain the optimal 
Delta QP as a ground truth.

Although we have used only two block sizes 64 × 64 and 32 × 32 , our method 
may be also easily extended to 16 × 16 and 8 × 8 block sizes. However, there is a 
performance constraint when using lower block sizes since there would be much 
more coding blocks in every CTU partition that would require an extra bit rate cost 
to store Delta QPs of each coding block. We have carried out tests with a specific 
network for 16 × 16 blocks. However, the experimental results showed that signaling 
the Delta QP in the bitstream for such small blocks introduces an excessively high 
overhead in the bit rate, without a substantial improvement in quality.

Each developed neural network consists of two main subnetworks: a convolu-
tional neural network (CNN) to process the pixel data and an artificial neural net-
work (ANN) to handle the structured input data. Both subnetworks are integrated 
into dense layers to produce the final output. Figure 3 shows the architecture of our 
proposed models.

We initially explored popular pre-trained architectures, such as EfficientNet [27] 
and MobileNetV3-Small [28], due to their well-documented performance in image 

Table 1  Example structure of the dataset for 64 × 64 blocks from Fig. 2

Variable Block (a) Block (b) Block (c) Block (d) Block (e) Block (f)

QP_base 33 20 34 27 42 17
QP_delta +5 −1 −3 −2 +4 −4
BPF 2025 2025 2025 506.25 506.25 99.04
minMDV 57.90 38.95 8.17 448.02 15.84 505.99
maxMDV 76.19 408.41 9.58 1268.48 38.72 316.07
meanMDV 67.24 275.61 8.85 949.80 25.84 18336.01
varMDV 51.87 13519.55 0.25 60428.35 47.95
pix_0001 56 99 95 69 37 131
pix_0002 56 106 94 80 39 131
... .. .. .. .. .. ..
pix_4095 76 42 98 97 29 84
pix_4096 69 40 90 97 29 85
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classification tasks and their relatively low computational cost. However, these mod-
els did not provide a competitive advantage in our specialized setup, where only 
luminance channel blocks are processed and a large-scale pre-trained feature hier-
archy is less beneficial. We adapted these networks to accept single-channel inputs, 
adjusted the block image sizes, and fine-tuned the final layers to predict the QP off-
set. Nonetheless, both EfficientNet and MobileNetV3-Small, originally developed 
for multi-channel color images and large-scale classification tasks, exhibited overfit-
ting on our smaller, domain-specific dataset, leading to suboptimal performance.

We therefore conducted a direct comparison between the pre-trained architec-
tures and our simplified two-layer CNN. Table 2 shows that our simpler approach 
achieves lower MSE, indicating better predictive accuracy for the specific task of 
QP estimation. In addition, its reduced model size provides practical advantages for 

Fig. 3  Diagram of our proposed dual hybrid CNN+Ann model. The green dotted part corresponds to 
the neural network for blocks of size 64 × 64 , while the blue dotted part corresponds to blocks of size 
32 × 32 . What is not dotted is common to both networks

Table 2  MSE values for pre-
trained CNN architectures and 
our simple CNN proposal for 
64 × 64 block sizes

EfficientNet [27] MobileNetV3-
Small [28]

Two-layer 
CNN 
(ours)

Train 3.544 3.310 2.067
Validation 4.426 4.352 2.012
Test 5.255 4.443 2.078
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video coding applications, where computational overhead is a key constraint. Our 
simpler architecture, with just two convolutional layers, converged more efficiently 
to a lower validation MSE, demonstrating that a task-specific design can outperform 
off-the-shelf pre-trained models in specialized scenarios.

To design the architecture of our neural networks and to search for optimal hyper-
parameters, we utilized Keras with TensorFlow as the backend. Additionally, Keras 
Tuner was employed to perform an extensive hyperparameter search for both neu-
ral networks, ensuring that our model configuration was both efficient and effective. 
This combination allowed us to streamline the development process, leveraging the 
robust features of Keras and the comprehensive tuning capabilities of Keras Tuner.

The architecture for both models, designed for 64 × 64 and 32 × 32 block sizes, 
shares many components, with differences indicated in the diagram (Fig.  3). The 
parts enclosed in green dotted lines correspond to the model dedicated to 64 × 64 
blocks, while the blue dotted lines represent the model for 32 × 32 blocks.

For both models, the input layers expect image blocks of shape (64, 64, 1) for the 
64 × 64 model and (32, 32, 1) for the 32 × 32 model. Two convolutional layers are 
applied to extract spatial features from the images, followed by MaxPooling layers 
to reduce the dimensionality of the feature maps. Dropout layers are incorporated to 
prevent overfitting. The specific number of filters and kernel sizes for these layers 
are presented in Fig. 3.

Parallel to the image input, the structured data, which includes the QPbase , Blocks 
per Frame (BPF), and the four statistical features from the MDV vector (minimum, 
maximum, mean, and variance), is processed by an ANN. The input layer for the 
structured data has a shape of (6, 1). The structured data is passed through dense 
layers, which are also depicted in the figure, with Dropout layers included to further 
prevent overfitting.

The outputs from both the CNN and ANN are concatenated into a single vector, 
which then passes through several dense layers to refine the QP offset prediction. 
The architecture of these dense layers and their respective units is also detailed in 
Fig. 3. The final output layer produces a single value, ΔQP , using a linear activation 
function. This value is constrained within the range of [−6, 6] to control the QP off-
set for the corresponding blocks.

Preprocessing is applied to the data before feeding it into the network. Image 
blocks are normalized by dividing each pixel value by 255, as the input bit depth at 
the encoder is set to 8 bits per pixel (Eq. 4). Additionally, the structured data is nor-
malized using the StandardScaler method to standardize the features by removing 
the mean and scaling to unit variance (Eq. 7).

(4)Inputpixel =
Datapixel

255

(5)� =
1

N

N
∑

i=1

Datastruct
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3.3  QP selection strategy: single‑ versus dual‑model approach

In our proposed method, two configurations for QP selection are available depend-
ing on whether one or both hybrid neural network models are used. These options 
allow different levels of flexibility and fine-tuning during the encoding process, as 
described below:

3.3.1  Option A: single‑model (SM)

In this scenario, the 64 × 64 hybrid neural network is employed to predict the opti-
mal QP value at the CU level. The VTM defaults to a maximum CU size of 64 × 64 
pixels.

During encoding, a CU of size 64 × 64 and its associated structured data are 
passed through the neural network model, which returns a QP offset or ΔQP . For 
example, let’s assume the model provides a QP offset of -2 (Fig.  4a2). If the CU 
is subsequently partitioned into smaller units (e.g., 32 × 32 or smaller blocks), the 
QP offset remains -2 for all partitions (Fig. 4a3). Thus, the 64 × 64 model controls 

(6)� =

√

√

√

√
1

N

N
∑

i=1

(Datastruct − �)2

(7)Inputstruct =
Datastruct − �

�

Fig. 4  Illustration of the QP offset strategies for 64 × 64 and 32 × 32 Coding Units (CUs). In (a), only the 
64 × 64 model is used, with the same QP offset applied across the entire CU. In (b), both the 64 × 64 and 
32 × 32 models are employed, allowing different QP offsets for each partitioned 32 × 32 block. The total 
QP offset is the sum of the 64 × 64 offset and the individual 32 × 32 offsets
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the QP for both the large 64 × 64 CU and any smaller partitions that result from the 
division of this CU.

3.3.2  Option B: dual‑model (DM)

In this approach, both hybrid neural networks are employed. The 64 × 64 model 
still determines the QP at the initial CU level, but when the CU is partitioned into 
smaller 32 × 32 blocks, the 32 × 32 model refines the QP selection further.

At the 64 × 64 CU level, the process begins similarly to option A. The QP offset 
from the 64 × 64 model is applied (Fig. 4b2). If the 64 × 64 CU is partitioned into 
four 32 × 32 blocks, each of these smaller CUs is then passed through the 32 × 32 
model, which provides an additional QP offset for each block (Fig. 4b3). For exam-
ple, the 32 × 32 model might return the following offsets for the four blocks: −2, 
0, −2, 1. The final QP for each 32 × 32 CU is determined by adding the QP offsets 
from both models (Fig. 4b4).

To comply with the limitations set by the VTM, the resulting QP values are con-
strained within a range of QPbase - 6 to QPbase + 6. This means that for a base 
QP of 32, the QP values will stay between 26 and 38, maintaining perceptual qual-
ity while introducing local QP adjustments based on both the 64 × 64 and 32 × 32 
models.

4  Results and discussion

In this section, we present both the performance of the proposed hybrid neural 
networks and their integration into the VVC reference software comparing it with 
respect to the native perceptual coding algorithm. In order to evaluate the perfor-
mance of the proposed hybrid neural networks, we have trained, validated and tested 
using a collection of CUs of 32 × 32 and 64 × 64 sizes extracted from the dataset 
described in Sect.  3.1. About 3.5 million blocks of each size were used for train-
ing, validation, and testing of the proposed hybrid neural networks, with splits of 
70%, 20%, and 10%, respectively. In order to verify the operation after integrating 
them into the VTM reference software, all sequences of common test conditions 
described for the VVC standard [24] have been used.

In addition, to better understand the dataset characteristics and the behavior of 
the Delta QP target variable, we analyzed its distribution for blocks of 32 × 32 and 
64 × 64 sizes. As shown in Fig. 5, the majority of Delta QP values fall within the 
range of −4 to −1 for both block sizes. This indicates that most blocks require a 
reduction in QP (less compression) to achieve better perceptual rate-distortion opti-
mization. The sharp drop-off at the extreme values (−6 and 6) highlights the con-
straints imposed by the VVC bitstream syntax, which limits the Delta QP range. 
Interestingly, a noticeable peak at ΔQP = 6 is observed. This occurs when blocks 
are nearly perfectly predicted, resulting in a residual block of zero. In such cases, the 
algorithm assigns the highest possible QP value since further compression does not 
alter the block’s content. This behavior is common in highly uniform, dark regions 
or synthetic/artificial images
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4.1  Hybrid neural network performance

In Fig.  6, we show the evolution of the training and validation losses for both of 
our proposed hybrid models ( 64 × 64 and 32 × 32 ) over 100 training epochs. The 
plot provides valuable insights into each model’s performance. Initially, both losses 
decrease rapidly, indicating effective learning and generalization of the architec-
tures. However, around epoch 50 for the 64 × 64 model and epoch 75 for the 32 × 32 
model, while the training loss continues to decrease, the validation loss stabilizes 
and fluctuates, suggesting potential overfitting, which may affect performance on 
new data.

Choosing the best epoch for each model strikes a balance between minimizing 
training loss and avoiding overfitting. For the 64 × 64 block size model, we selected 
epoch 53, as this point provides sufficient training without significantly compromis-
ing generalization ability. For the 32 × 32 block size model, epoch 74 was chosen, 
as it offered the best trade-off between learning and generalization for this network. 
This careful selection for both models ensures robust performance across unseen 

Fig. 5  Distribution of Delta QP values for the labelled datasets with 64 × 64 blocks  and 32 × 32 blocks  
(color figure online)

Fig. 6  Training and validation loss. The plot shows the mean squared error (MSE) loss for both training 
and validation datasets across 100 epochs
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blocks of images, optimizing the balance between learning and generalization. As 
shown in Table  3, the performance metrics, such as MSE, RMSE, and MAE, for 
both models are practically identical in the different partitions of the data set.

The confusion matrices for the test dataset shown in Fig. 7, provide a comprehen-
sive overview of the performance of both models in predicting the optimal ΔQP val-
ues. The diagonal elements of each matrix represent correctly predicted instances, 
showing that both models perform well overall. High values along the diagonal, par-
ticularly for ΔQP values like −1, 0, and 1, reflect strong performance in accurately 
predicting these values, indicating that the networks are proficient in predicting most 
of the optimal ΔQP values.

However, when comparing the two models, a notable difference can be observed. 
The 64 × 64 block size model exhibits a sharper diagonal, suggesting higher accu-
racy and fewer mispredictions compared to the 32 × 32 model, whose diagonal is 
slightly wider. This suggests that the 64 × 64 model makes more precise predic-
tions, with less variance, as evidenced by fewer off-diagonal entries in the confusion 
matrix. The results in Table 3, where the 64 × 64 model consistently achieves lower 
loss values, further reinforce this observation.

Although misclassifications are inevitable given that the models operate in a 
regression framework rather than pure classification, these errors are generally 
small. In most cases, mispredictions are only one or two positions away from the 
correct value, demonstrating that the models’ errors remain localized. This close 
proximity between true and predicted values even in misclassifications underscores 
the models’ robustness, as their predictions seldom deviate far from the correct opti-
mal QP value.

Table 3  Loss values for the 
proposed models

64 × 64 Block size 32 × 32 Block size

MSE RMSE MAE MSE RMSE MAE

Train 2.067 1.438 0.994 2.780 1.667 1.199
Validation 2.012 1.418 0.986 2.780 1.667 1.198
Test 2.078 1.442 1.002 2.764 1.662 1.198

Fig. 7  Confusion matrices for the test dataset. The matrix on the left corresponds to the 64 × 64 network, 
while the matrix on the right corresponds to the 32 × 32 network
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4.2  Integration of hybrid neural network in VTM reference software

Once both neural network models were trained and evaluated, they were integrated 
into the VVC reference software, VTM (version 17.0) [2], to perform inference on 
32 × 32 and 64 × 64 CU blocks during encoding. To import the models, we used the 
TensorFlow C API (version 2.16.0).

Following the integration of both models, we evaluated the implementation using 
the sequences specified in the VTM common test conditions [24], which include 
video sequences of varying resolutions, from 240p to 4K.

For the comparative analysis, we selected two state-of-the-art perceptual algo-
rithms presented in VTM, AdaptiveQP [3, 4] and QPA [5], and compared their 
performance to our proposed algorithms. For AdaptiveQP, we evaluated two depth 
levels, applying the algorithm at both the 64 × 64 (AQP2) and 32 × 32 (AQP4) 
block levels, to ensure a fair comparison with our two-model approach. For our 
algorithm, we conducted tests using both configurations: the single-model approach 
(SM), where only the 64 × 64 model is used, and the dual-model approach (DM), 
where the 64 × 64 model is combined with the 32 × 32 model for further partitioned 
blocks. This comparison allows us to directly assess the impact of utilizing different 
block sizes and model configurations on the coding performance.

Upon executing the tests for base QP values of 22, 27, 32, 37, and 42, we 
obtained the following values of the Bjøntegaard delta rate (BD-Rate) [29], compar-
ing the results of both models against the executions that did not apply any percep-
tual mechanism as a reference.

Table 4 shows the results for the perceptual objective metrics. The weighted peak 
signal-to-noise ratio (WPSNR) is the primary metric used for training our model, as 
it emphasizes perceptual relevance by assigning weights to different image regions 
based on their visual importance. The MS-SSIM (multi-scale structural similarity) 
metric [30] is designed to assess structural fidelity by evaluating luminance, con-
trast, and structural information across multiple scales, aligning with how HVS 
processes images at various resolutions. PSNR-HVS-M [31], an improved version 
of PSNR, incorporates the contrast sensitivity function (CSF) and inter-coefficient 
contrast masking, which better captures the HVS’s response to different spatial fre-
quencies and textures. Finally, video multi-method assessment fusion (VMAF) [32], 
developed by Netflix, combines multiple perceptual quality metrics, including visual 
information fidelity (VIF), and machine learning models to predict subjective qual-
ity scores. Unlike the other metrics, VMAF is trained using real subjective test data, 
providing strong alignment with human perception, and has been shown to have 
a high correlation with mean opinion score (MOS) values for both HD and UHD 
content.

The results presented in Table 4 offer a comprehensive view of the performance 
of different algorithms, including QPA, AdaptiveQP at two block sizes (denoted as 
AQP2 for 64 × 64 and AQP4 for 32 × 32 ), and our proposed models (SM and DM), 
across various perceptual metrics and resolutions. An initial general observation 
reveals that AdaptiveQP falls short in most cases, while QPA exhibits strong perfor-
mance across a majority of metrics and resolutions. However, when it comes to the 
VMAF metric, widely regarded as the most advanced and widely used perceptual 
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metric today, our proposed algorithms outperform QPA, making this the most note-
worthy result.

Our algorithm performs substantially better than AdaptiveQP across most met-
rics and resolutions. While AdaptiveQP produces acceptable results for MS-SSIM 
metric, it struggles overall, especially in WPSNR and VMAF metrics, which are 
more reflective of perceptual quality. The comparison between QPA and our mod-
els shows more competitive results. Although QPA generally achieves better per-
formance in WPSNR, MS-SSIM, and PSNR-HVS-M, our algorithm significantly 
outperforms QPA in VMAF across all video resolutions. This is a key takeaway, as 
VMAF has become a standard for video quality assessment, particularly because 
it is machine-learning-based and trained on subjective test data, making it highly 
aligned with real human perception.

The comparison between our single-model approach (SM) and the dual-model 
approach (DM) reveals an interesting pattern. At higher resolutions (such as 
1080p and 2160p), SM tends to outperform DM, suggesting that adjusting the QP 
at smaller block sizes (i.e., 32 × 32 blocks) is not as beneficial when the overall 

Table 4  BD-Rate results comparing default QPA and Adaptive QP algorithms (AQP2 and AQP4) with 
our proposed models (SM and DM) across different perceptual metrics and resolutions

AQP2, Adaptive QP with depth level up to 64 × 64 blocks; AQP4, adaptive QP with depth level up to 
32 × 32 blocks; SM (single-model), proposed method with depth level up to 64 × 64 blocks; DM (dual-
model), proposed method with depth level up to 32 × 32 blocks

Metric Resolution QPA [5] AQP2 ( 64 × 64 ) 
[4]

AQP4 ( 32 × 32 ) 
[4]

SM (ours) DM (ours)

WPSNR 240p −9.447 3.252 2.811 −4.814 −7.495
480p −9.590 1.251 1.634 −7.854 −7.721
720p −1.864 3.003 4.137 −1.894 1.729
1080p −9.508 4.852 7.735 −8.313 −5.893
2160p −2.909 6.896 8.794 −2.515 1.437

MS-SSIM 240p −9.597 −0.356 −1.286 −9.641 −9.535
480p −9.455 −4.487 −3.940 −9.104 −6.692
720p −9.215 −2.144 −0.591 −8.766 −5.811
1080p −8.927 −2.209 −1.019 −7.825 −5.383
2160p −1.776 −1.516 0.268 1.262 7.166

PSNR-HVS-M 240p −7.856 3.523 3.309 −2.823 −4.954
480p −6.414 1.426 1.815 −5.137 −4.824
720p 0.745 4.193 5.407 0.492 3.045
1080p −6.060 4.601 5.837 −4.766 −3.771
2160p −0.756 6.436 8.197 −0.226 3.981

VMAF 240p −12.602 8.663 11.259 −52.470 −49.079
480p −0.406 5.244 7.507 −9.452 −5.045
720p 0.896 7.644 9.698 −14.262 −12.577
1080p 0.159 7.488 9.775 −19.436 −13.229
2160p 1.336 9.685 12.239 −11.738 −5.336
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sequence resolution is high. For example, in 2160p MS-SSIM, SM achieves a BD-
Rate of −2.515 , while DM performs worse, with a BD-Rate of 1.437, indicating 
a loss in performance with the dual-model approach. This suggests that at higher 
resolutions, the extra complexity introduced by fine-tuning QP at smaller block sizes 
does not translate into better performance and might, in fact, contribute to overhead 
in the bitstream, reducing overall efficiency.

Conversely, at lower resolutions, such as 240p and 480p, the dual-model approach 
(DM) performs better, as shown by its lower BD-Rate values across various metrics 
compared to SM. For example, in 480p WPSNR, DM achieves −7.721 , compared 
to −7.854 for SM, indicating a slight improvement. This trend suggests that adjust-
ing the QP at smaller block sizes is more impactful at lower resolutions, where finer 
granularity in QP optimization can lead to better perceptual quality.

While QPA demonstrates strong results in most perceptual metrics, particularly 
WPSNR, MS-SSIM, and PSNR-HVS-M, the standout finding is that our proposed 
models significantly outperform QPA in VMAF, the most widely recognized met-
ric in the industry today. For instance, in 1080p VMAF, DM achieves an impres-
sive BD-Rate of −13.229 , while QPA only manages 0.159. Similarly, at 2160p, DM 
reaches −5.336 in VMAF, while QPA yields 1.336, again highlighting the superior-
ity of our approach in this metric.

The significance of VMAF cannot be overstated, as it integrates various percep-
tual features through machine learning models, making it particularly well suited to 
reflect real human viewing experiences. If QPA were to consistently outperform our 
models across all metrics, we would not have achieved such strong results overall. 
However, the fact that our algorithm surpasses QPA in VMAF means that we are 
highly competitive in terms of perceptual quality, especially in terms of what mat-
ters most in current industry standards.

It is also important to highlight that VMAF does not perform optimally at low 
resolutions, such as 240p. This is evident from the relatively high BD-Rate values 
across all algorithms for this metric. For instance, in 240p VMAF, QPA produces a 
BD-Rate of −12.602 , while DM reaches −49.079 , and AQP4 shows 11.259, all of 
which indicate anomalies. The primary reason for this is that the VMAF model has 
been trained for 1080p sequences, and although scaling is applied during the evalu-
ation of lower resolution sequences, the results at 240p suggest that VMAF does 
not provide reliable data for very low resolutions. This inconsistency must be kept 
in mind when interpreting VMAF results at 240p, though the overall trend across 
higher resolutions remains highly favorable for our algorithm.

Finally, AdaptiveQP performs poorly in most cases compared to both our algo-
rithm and QPA. However, it does show slightly better results for the MS-SSIM met-
ric, indicating that AdaptiveQP is more aligned with preserving structural similarity 
across multiple scales. For example, in 240p MS-SSIM, AQP2 achieves a BD-Rate 
of −0.356 , which is more competitive compared to its performance in WPSNR or 
VMAF. Nevertheless, AdaptiveQP’s performance is generally inferior, especially in 
VMAF and PSNR-HVS-M, where our models and QPA consistently outperform it 
across all resolutions.

The analysis of Table 4 demonstrates that our proposed models (SM and DM) 
perform substantially better than AdaptiveQP and provide competitive performance 
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compared to QPA, particularly when evaluated with the VMAF metric. VMAF is 
the most important and relevant metric in today’s industry, and the fact that our 
models outperform QPA in this metric highlights the success of our approach. Addi-
tionally, SM performs better at higher resolutions, while DM is more effective at 
lower resolutions, suggesting that fine-tuning QP at smaller block sizes is more ben-
eficial at lower resolutions. Finally, VMAF’s limited accuracy at low resolutions and 
AdaptiveQP’s poor performance overall, except for MS-SSIM, are also critical fac-
tors to consider when interpreting the results.

5  Conclusion

In this study, we proposed a dual hybrid neural network model that combines con-
volutional neural networks (CNNs) and structured data inputs to optimize the quan-
tization parameter (QP) for both 64 × 64 and 32 × 32 blocks in the versatile video 
coding (VVC) standard. By leveraging the strengths of CNNs for spatial feature 
extraction and artificial neural networks (ANNs) for structured data handling, our 
model aimed to enhance QP prediction accuracy and improve video compression 
efficiency. The performance of the proposed models was evaluated using a range of 
perceptual metrics, including WPSNR, MS-SSIM, PSNR-HVS-M, and VMAF.

The results show that our hybrid models provide significant improvements over 
existing perceptual coding algorithms. In particular, our models outperform Adap-
tiveQP across all metrics and resolutions and demonstrate highly competitive perfor-
mance compared to QPA. While QPA generally performs better on traditional met-
rics such as WPSNR and MS-SSIM, our models excel when evaluated using VMAF, 
the most advanced and widely recognized metric for perceptual video quality. This 
highlights the effectiveness of our approach in aligning compression optimization 
with real-world perceptual quality standards, as VMAF is trained on subjective data 
and closely correlates with human visual experience.

Further analysis indicates that the single-model approach, which uses only the 
64 × 64 neural network, performs better at higher resolutions (1080p and 2160p). 
In contrast, the dual-model approach which integrates both the 64 × 64 and 32 × 32 
networks, is more effective at lower resolutions (240p and 480p). This suggests that 
fine-tuning QP at smaller block sizes is beneficial for lower resolutions but may 
introduce unnecessary overhead at higher resolutions, where larger block sizes dom-
inate and finer adjustments are less critical.

In future work, we plan to further optimize our models by exploring the impact 
of additional structured data inputs and advanced hyperparameter tuning techniques. 
We also aim to refine the dual-model approach by investigating how the model could 
better balance QP adjustments across different block sizes, especially at higher reso-
lutions where overhead from smaller block adjustments could be minimized. Moreo-
ver, we will explore training the model on different video resolutions and content 
types to generalize the approach across a broader range of scenarios.
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