Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/31247

Auto-adaptive robot-aided therapy using machinelearning techniques


no-thumbnailView/Open:

 2014_cmpb.pdf



1,48 MB
Adobe PDF
Share:

This resource is restricted

Title:
Auto-adaptive robot-aided therapy using machinelearning techniques
Authors:
Badesa, Francisco Javier
García Aracil, Nicolás
Morales, Ricardo
Sabater, José M.
Casals, Alicia
Zollo, Loredana
Editor:
Elsevier
Department:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Issue Date:
2013
URI:
https://hdl.handle.net/11000/31247
Abstract:
This paper presents an application of a classification method to adaptively and dynamicallymodify the therapy and real-time displays of a virtual reality system in accordance with thespecific state of each patient using his/her physiological reactions. First, a theoretical back-ground about several machine learning techniques for classification is presented. Then, ninemachine learning techniques are compared in order to select the best candidate in terms ofaccuracy. Finally, first experimental results are presented to show that the therapy can bemodulated in function of the patient state using machine learning classification techniques.
Keywords/Subjects:
Physiological state
Multimodal interfaces
Rehabilitation robotics
Stroke rehabilitationa
Knowledge area:
CDU: Generalidades.: Ciencia y tecnología de los ordenadores. Informática.
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Appears in Collections:
Artículos Ingeniería de Sistemas y Automática



Creative Commons ???jsp.display-item.text9???