Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/31247
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Badesa, Francisco Javier | - |
dc.contributor.author | García Aracil, Nicolás | - |
dc.contributor.author | Morales, Ricardo | - |
dc.contributor.author | Sabater, José M. | - |
dc.contributor.author | Casals, Alicia | - |
dc.contributor.author | Zollo, Loredana | - |
dc.contributor.other | Departamentos de la UMH::Ingeniería de Sistemas y Automática | es_ES |
dc.date.accessioned | 2024-02-07T17:49:38Z | - |
dc.date.available | 2024-02-07T17:49:38Z | - |
dc.date.created | 2013 | - |
dc.identifier.citation | computermethods and programs in biomedicine 116 (2014) 123–130 | es_ES |
dc.identifier.issn | 1872-7565 | - |
dc.identifier.issn | 0169-2607 | - |
dc.identifier.uri | https://hdl.handle.net/11000/31247 | - |
dc.description.abstract | This paper presents an application of a classification method to adaptively and dynamicallymodify the therapy and real-time displays of a virtual reality system in accordance with thespecific state of each patient using his/her physiological reactions. First, a theoretical back-ground about several machine learning techniques for classification is presented. Then, ninemachine learning techniques are compared in order to select the best candidate in terms ofaccuracy. Finally, first experimental results are presented to show that the therapy can bemodulated in function of the patient state using machine learning classification techniques. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 8 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | https://doi.org/10.1016/j.cmpb.2013.09.011 | es_ES |
dc.rights | info:eu-repo/semantics/closedAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Physiological state | es_ES |
dc.subject | Multimodal interfaces | es_ES |
dc.subject | Rehabilitation robotics | es_ES |
dc.subject | Stroke rehabilitationa | es_ES |
dc.subject.other | CDU::0 - Generalidades.::04 - Ciencia y tecnología de los ordenadores. Informática. | es_ES |
dc.title | Auto-adaptive robot-aided therapy using machinelearning techniques | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
Ver/Abrir:
2014_cmpb.pdf
1,48 MB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.