Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/31247
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBadesa, Francisco Javier-
dc.contributor.authorGarcía Aracil, Nicolás-
dc.contributor.authorMorales, Ricardo-
dc.contributor.authorSabater, José M.-
dc.contributor.authorCasals, Alicia-
dc.contributor.authorZollo, Loredana-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2024-02-07T17:49:38Z-
dc.date.available2024-02-07T17:49:38Z-
dc.date.created2013-
dc.identifier.citationcomputermethods and programs in biomedicine 116 (2014) 123–130es_ES
dc.identifier.issn1872-7565-
dc.identifier.issn0169-2607-
dc.identifier.urihttps://hdl.handle.net/11000/31247-
dc.description.abstractThis paper presents an application of a classification method to adaptively and dynamicallymodify the therapy and real-time displays of a virtual reality system in accordance with thespecific state of each patient using his/her physiological reactions. First, a theoretical back-ground about several machine learning techniques for classification is presented. Then, ninemachine learning techniques are compared in order to select the best candidate in terms ofaccuracy. Finally, first experimental results are presented to show that the therapy can bemodulated in function of the patient state using machine learning classification techniques.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent8es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofhttps://doi.org/10.1016/j.cmpb.2013.09.011es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPhysiological statees_ES
dc.subjectMultimodal interfaceses_ES
dc.subjectRehabilitation roboticses_ES
dc.subjectStroke rehabilitationaes_ES
dc.subject.otherCDU::0 - Generalidades.::04 - Ciencia y tecnología de los ordenadores. Informática.es_ES
dc.titleAuto-adaptive robot-aided therapy using machinelearning techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Aparece en las colecciones:
Artículos Ingeniería de Sistemas y Automática


no-thumbnailVer/Abrir:

 2014_cmpb.pdf



1,48 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.