Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30966

Empirical Models for the Realistic Generation of Cooperative Awareness Messages in Vehicular Networks


no-thumbnailVer/Abrir:

 Empirical_Models_for_the_Realistic_Generation_of_Cooperative_Awareness_Messages_in_Vehicular_Networks.pdf



787,28 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Empirical Models for the Realistic Generation of Cooperative Awareness Messages in Vehicular Networks
Autor :
Molina-Masegosa, Rafael
Sepulcre, Miguel  
Gozalvez, Javier
Berens, Friedbert
Martinez, Vincent  
Editor :
Institute of Electrical and Electronics Engineers
Departamento:
Departamentos de la UMH::Ingeniería de Comunicaciones
Fecha de publicación:
2020-05
URI :
https://hdl.handle.net/11000/30966
Resumen :
Most V2X (Vehicle-to-Everything) applications rely on broadcasting awareness messages known as CAM (Cooperative Awareness Messages) in ETSI or BSM (Basic Safety Message) in SAE standards. A large number of studies have been devoted to guarantee their reliable transmission. However, to date, the studies are generally based on simplified data traffic models that generate awareness messages at periodic intervals or with a constant message size. These models do not accurately represent the real generation of CAM messages that follow specific mobility-based rules. Using simplified and unrealistic traffic models can significantly impact the results and validity of the studies, and hence accurate models for the generation of awareness messages are necessary. This paper proposes the first set of models that can realistically generate CAM messages. The models have been created from real traces collected by two car manufacturers in urban, sub-urban and highway test drives. The models are based on mth order Markov sources, and model the size of CAMs and the time interval between CAMs. The models are openly provided to the community and can be easily integrated into any simulator.
Palabras clave/Materias:
V2X
vehicular networks
CAM
BSM
awareness
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo documento :
application/pdf
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1109/TVT.2020.2979232
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.