Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30460

Noise-Scaled Euclidean Distance: A Metric for Maximum Likelihood Estimation of the PV Model Parameters

Título :
Noise-Scaled Euclidean Distance: A Metric for Maximum Likelihood Estimation of the PV Model Parameters
Autor :
Batzelis, Efstratios  
Blanes, Jose M.  
Toledo Melero, Fco. Javier  
Galiano, Vicente  
Editor :
IEEE Xplore
Departamento:
Departamentos de la UMH::Ingeniería de Computadores
Fecha de publicación:
2022-05
URI :
https://hdl.handle.net/11000/30460
Resumen :
This article revisits the objective function (or metric) used in the extraction of photovoltaic (PV) model parameters. A theoretical investigation shows that the widely used current distance (CD) metric does not yield the maximum likelihood estimates (MLE) of the model parameters when there is noise in both voltage and current samples. It demonstrates that the Euclidean distance (ED) should be used instead, when the voltage and current noise powers are equal. For the general case, a new noise-scaled Euclidean distance (NSED) metric is proposed as a weighted variation of ED, which is shown to fetch the MLE of the parameters at any noise conditions. This metric requires the noise ratio (i.e., ratio of the two noise variances) as an additional input, which can be estimated by a new noise estimation (NE) method introduced in this study. One application of the new metric is to employ NSED regression as a follow-up step to existing parameter extraction methods toward fine-tuning of their outputs. Results on synthetic and experimental data show that the so-called NSED regression “add-on” improves the accuracy
Palabras clave/Materias:
Euclidean distance (ED)
fitting
noise extraction (NE)
orthogonal distance
parameter estimation
parameter extraction
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
DOI :
https://doi.org/ 10.1109/JPHOTOV.2022.3159390
Aparece en las colecciones:
Artículos Ingeniería de computadores



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.