Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30460

Noise-Scaled Euclidean Distance: A Metric for Maximum Likelihood Estimation of the PV Model Parameters

Title:
Noise-Scaled Euclidean Distance: A Metric for Maximum Likelihood Estimation of the PV Model Parameters
Authors:
Batzelis, Efstratios  
Blanes, Jose M.  
Toledo Melero, Fco. Javier  
Galiano, Vicente  
Editor:
IEEE Xplore
Department:
Departamentos de la UMH::Ingeniería de Computadores
Issue Date:
2022-05
URI:
https://hdl.handle.net/11000/30460
Abstract:
This article revisits the objective function (or metric) used in the extraction of photovoltaic (PV) model parameters. A theoretical investigation shows that the widely used current distance (CD) metric does not yield the maximum likelihood estimates (MLE) of the model parameters when there is nois...  Ver más
Keywords/Subjects:
Euclidean distance (ED)
fitting
noise extraction (NE)
orthogonal distance
parameter estimation
parameter extraction
Knowledge area:
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/openAccess
DOI:
https://doi.org/ 10.1109/JPHOTOV.2022.3159390
Appears in Collections:
Artículos Ingeniería de computadores



Creative Commons ???jsp.display-item.text9???