Buscar por Autor Aparicio, Juan

Ir a: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
O introducir las primeras letras:  
Mostrando resultados 1 a 9 de 9
Vista previaFecha de publicaciónTítuloAutor(es)Acceso
Pastor et al. 2023.pdf.jpg2023A general direct approach for decomposing profit inefficiency
Pastor, Jesus T.; Zofío, José Luis; Aparicio, Juan; Pastor, Diego
Int Trans Operational Res - 2024 - España.pdf.jpg2025An adaptation of Random Forest to estimate convex non-parametric production technologies: an empirical illustration of efficiency measurement in educationEspaña Roch, Victor Javier; Aparicio, Juan; Barber i Vallés, Josep Xavier
1-s2.0-S2214716023000192-main.pdf.jpg2023An unsupervised learning-based generalization of Data Envelopment AnalysisMoragues, Raul; Aparicio, Juan; Esteve, Miriam
An R Package for fitting Efficiency.pdf.jpg2022eat: An R Package for fitting Efficiency Analysis Trees
Esteve, Miriam; España Roch, Víctor Javier; Aparicio, Juan; Barber i Vallés, Josep Xavier
Estimating production functions through additive models based.pdf.jpg2024Estimating production functions through additive models based on regression splines
España Roch, Víctor Javier; Aparicio, Juan; Barber i Vallés, Josep Xavier; Esteve, Miriam
Estimating production technologies using multi-output adaptive.pdf.jpg2025Estimating production technologies using multi-output adaptive constrained enveloping splinesEspaña Roch, Víctor Javier; Aparicio, Juan; Barber i Vallés, Josep Xavier
1-s2.0-S0305054823003490-main.pdf.jpg2024Evaluating different methods for ranking inputs in the context of the performance assessment of decision making units: A machine learning approach
Moragues, Raul; Valero-Carreras, Daniel; Aparicio, Juan; GUERRERO MARTÍNEZ, NADIA M.
s12351-023-00788-4-2.pdf.jpg2023Measuring technical efciency for multi‐input multi‐output production processes through OneClass Support Vector Machines: a fnite‐sample studyMoragues, Raul; Aparicio, Juan; Esteve, Miriam
mathematics-11-02590-v2-1.pdf.jpg2023Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning TechniquesMoragues, Raul; Aparicio, Juan; Esteve, Miriam