Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/35086

An unsupervised learning-based generalization of Data Envelopment Analysis


Vista previa

Ver/Abrir:
 1-s2.0-S2214716023000192-main.pdf

892,67 kB
Adobe PDF
Compartir:
Título :
An unsupervised learning-based generalization of Data Envelopment Analysis
Autor :
Moragues, Raul  
Aparicio, Juan
Esteve, Miriam  
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2023
URI :
https://hdl.handle.net/11000/35086
Resumen :
A B S T R A C T In this paper, we introduce an unsupervised machine learning method for production frontier estimation. This new approach satisfies fundamental properties of microeconomics, such as convexity and free disposability (shape constraints). The new method generalizes Data Envelopment Analysis (DEA) through the adaptation of One-Class Support Vector Machines with piecewise linear transformation mapping. The new technique aims to reduce the overfitting problem occurring in DEA. How to measure technical inefficiency through the directional distance function is also introduced. Finally, we evaluate the performance of the new technique via a computational experience, showing that the mean squared error in the estimation of the frontier is up to 83% better than the standard DEA in certain scenarios.
Palabras clave/Materias:
Data Envelopment Analysis
Unsupervised machine learning
Support Vector Machines
Frontier analysis
Technical efficiency
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.orp.2023.100284
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.