Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/35088

Measuring technical efciency for multi‐input multi‐output production processes through OneClass Support Vector Machines: a fnite‐sample study


Vista previa

Ver/Abrir:
 s12351-023-00788-4-2.pdf

2,24 MB
Adobe PDF
Compartir:
Título :
Measuring technical efciency for multi‐input multi‐output production processes through OneClass Support Vector Machines: a fnite‐sample study
Autor :
Moragues, Raul  
Aparicio, Juan
Esteve, Miriam  
Editor :
Springer
Departamento:
Departamentos de la UMH::Estudios Económicos y Financieros
Fecha de publicación:
2023
URI :
https://hdl.handle.net/11000/35088
Resumen :
Abstract We introduce a new method for the estimation of production technologies in a multiinput multi-output context, based on OneClass Support Vector Machines with piecewise linear transformation mapping. We compare via a fnite-sample simulation study the new technique with Data Envelopment Analysis (DEA) to estimate technical efciency. The criteria adopted for measuring the performance of the estimators are bias and mean squared error. The simulations reveal that the approach based on machine learning seems to provide better results than DEA in our fnite-sample scenarios. We also show how to adapt several well-known technical efciency measures to the introduced estimator. Finally, we compare the new technique with respect to DEA via its application to an empirical database of USA schools from the Programme for International Student Assessment, where we obtain statistically signifcant diferences in the efciency scores determined through the Slacks-Based Measure.
Palabras clave/Materias:
Data envelopment analysis
OneClassSVM
Technical efciency
Overftting
Efciency measures
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1007/s12351-023-00788-4
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.