Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/35050
Ranking the Importance of Variables in a Nonparametric Frontier
Analysis Using Unsupervised Machine Learning Techniques
Título : Ranking the Importance of Variables in a Nonparametric Frontier
Analysis Using Unsupervised Machine Learning Techniques |
Autor : Moragues, Raul Aparicio, Juan Esteve, Miriam |
Editor : MDPI |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2023 |
URI : https://hdl.handle.net/11000/35050 |
Resumen :
Abstract: In this paper, we propose and compare new methodologies for ranking the importance of
variables in productive processes via an adaptation of OneClass Support Vector Machines. In particular,
we adapt two methodologies inspired by the machine learning literature: one involving the random
shuffling of values of a variable and another one using the objective value of the dual formulation of
the model. Additionally, we motivate the use of these type of algorithms in the production context and
compare their performance via a computational experiment. We observe that the methodology based
on shuffling the values of a variable outperforms the methodology based on the dual formulation. We
observe that the shuffling-based methodology correctly ranks the variables in 94% of the scenarios with
one relevant input and one irrelevant input. Moreover, it correctly ranks each variable in at least 65% of
replications of a scenario with three relevant inputs and one irrelevant input.
|
Palabras clave/Materias: data envelopment analysis feature ranking model specification unsupervised machine learning technical efficiency overfitting |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.3390/math11112590 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.