Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38869
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDvořák, Jiří-
dc.contributor.authorMrkvička, Tomáš-
dc.contributor.authorMateu, Jorge-
dc.contributor.authorGonzález Monsalve, Jonatan Andrey-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2026-01-14T10:19:19Z-
dc.date.available2026-01-14T10:19:19Z-
dc.date.created2022-
dc.identifier.citationInternational Statistical Reviewes_ES
dc.identifier.issn1751-5823-
dc.identifier.issn0306-7734-
dc.identifier.urihttps://hdl.handle.net/11000/38869-
dc.description.abstractWe investigate testing of the hypothesis of independence between a covariate and the marks in a marked point process. It would be rather straightforward if the (unmarked) point process were independent of the covariate and the marks. In practice, however, such an assumption is questionable and possible dependence between the point process and the covariate or the marks may lead to incorrect conclusions. Therefore, we propose to investigate the complete dependence structure in the triangle points–marks–covariates together. We take advantage of the recent development of the nonparametric random shift methods, namely, the new variance correction approach, and propose tests of the null hypothesis of independence between the marks and the covariate and between the points and the covariate. We present a detailed simulation study showing the performance of the methods and provide two theorems establishing the appropriate form of the correction factors for the variance correction. Finally, we illustrate the use of the proposed methods in two real applications.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent30es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relation.ispartofseriesVol. 90es_ES
dc.relation.ispartofseriesnº 3es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcovariatees_ES
dc.subjecthypothesis testinges_ES
dc.subjectindependencees_ES
dc.subjectmarked point processes_ES
dc.subjectnonparametric inferencees_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleNonparametric Testing of the Dependence Structure Among Points–Marks–Covariates in Spatial Point Patternses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1111/insr.12503es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 2022 Dvorak et al - Nonparametric Testing of the Dependence Structure Among Points Marks Covariates.pdf



1,11 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.