Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/38869
Nonparametric Testing of the Dependence Structure Among Points–Marks–Covariates in Spatial Point Patterns
Ver/Abrir: 2022 Dvorak et al - Nonparametric Testing of the Dependence Structure Among Points Marks Covariates.pdf
1,11 MB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Nonparametric Testing of the Dependence Structure Among Points–Marks–Covariates in Spatial Point Patterns |
Autor : Dvořák, Jiří Mrkvička, Tomáš Mateu, Jorge González Monsalve, Jonatan Andrey |
Editor : Wiley |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2022 |
URI : https://hdl.handle.net/11000/38869 |
Resumen :
We investigate testing of the hypothesis of independence between a covariate and the marks in a marked point process. It would be rather straightforward if the (unmarked) point process were independent of the covariate and the marks. In practice, however, such an assumption is questionable and possible dependence between the point process and the covariate or the marks may lead to incorrect conclusions. Therefore, we propose to investigate the complete dependence structure in the triangle points–marks–covariates together. We take advantage of the recent development of the nonparametric random shift methods, namely, the new variance correction approach, and propose tests of the null hypothesis of independence between the marks and the covariate and between the points and the covariate. We present a detailed simulation study showing the performance of the methods and provide two theorems establishing the appropriate form of the correction factors for the variance correction. Finally, we illustrate the use of the proposed methods in two real applications.
|
Palabras clave/Materias: covariate hypothesis testing independence marked point process nonparametric inference |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1111/insr.12503 |
Publicado en: International Statistical Review |
Aparece en las colecciones: Artículos - Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.