Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38869

Nonparametric Testing of the Dependence Structure Among Points–Marks–Covariates in Spatial Point Patterns


no-thumbnailVer/Abrir:

 2022 Dvorak et al - Nonparametric Testing of the Dependence Structure Among Points Marks Covariates.pdf



1,11 MB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Nonparametric Testing of the Dependence Structure Among Points–Marks–Covariates in Spatial Point Patterns
Autor :
Dvořák, Jiří
Mrkvička, Tomáš
Mateu, Jorge
González Monsalve, Jonatan Andrey
Editor :
Wiley
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2022
URI :
https://hdl.handle.net/11000/38869
Resumen :
We investigate testing of the hypothesis of independence between a covariate and the marks in a marked point process. It would be rather straightforward if the (unmarked) point process were independent of the covariate and the marks. In practice, however, such an assumption is questionable and possible dependence between the point process and the covariate or the marks may lead to incorrect conclusions. Therefore, we propose to investigate the complete dependence structure in the triangle points–marks–covariates together. We take advantage of the recent development of the nonparametric random shift methods, namely, the new variance correction approach, and propose tests of the null hypothesis of independence between the marks and the covariate and between the points and the covariate. We present a detailed simulation study showing the performance of the methods and provide two theorems establishing the appropriate form of the correction factors for the variance correction. Finally, we illustrate the use of the proposed methods in two real applications.
Palabras clave/Materias:
covariate
hypothesis testing
independence
marked point process
nonparametric inference
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1111/insr.12503
Publicado en:
International Statistical Review
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.