Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/38842
N-Dimensional Reduction Algorithm for Learning from Demonstration Path Planning
Título : N-Dimensional Reduction Algorithm for Learning from Demonstration Path Planning |
Autor : Manrique-Cordoba, Juliana Casa-Lillo, Miguel Ángel de la Sabater-Navarro, José María |
Editor : MDPI |
Departamento: Departamentos de la UMH::Ingeniería de Sistemas y Automática |
Fecha de publicación: 2025-03 |
URI : https://hdl.handle.net/11000/38842 |
Resumen :
This paper presents an n-dimensional reduction algorithm for Learning from
Demonstration (LfD) for robotic path planning, addressing the complexity of highdimensional
data. The method extends the Douglas–Peucker algorithm by incorporating
velocity and orientation alongside position, enabling more precise trajectory simplification.
A magnitude-based normalization process preserves proportional relationships across
dimensions, and the reduced dataset is used to train Hidden Markov Models (HMMs),
where continuous trajectories are discretized into identifier sequences. The algorithm is
evaluated in 2D and 3D environments with datasets combining position and velocity. The
results show that incorporating additional dimensions significantly enhances trajectory
simplification while preserving key information. Additionally, the study highlights the importance
of selecting appropriate encoding parameters to achieve optimal resolution. The
HMM-based models generated new trajectories that retained the patterns of the original
demonstrations, demonstrating the algorithm’s capacity to generalize learned behaviors
for trajectory learning in high-dimensional spaces.
|
Palabras clave/Materias: Learning from demonstration Hidden Markov models Data reduction Douglas-Peucker algorithm High-dimensional data encoding |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.3390/s25072145 |
Publicado en: Sensors, Vol. 25, Nº7 (2025) |
Aparece en las colecciones: Artículos - Ingeniería de Sistemas y Automática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.