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Abstract: This paper presents an n-dimensional reduction algorithm for Learning from
Demonstration (LfD) for robotic path planning, addressing the complexity of high-
dimensional data. The method extends the Douglas–Peucker algorithm by incorporating
velocity and orientation alongside position, enabling more precise trajectory simplification.
A magnitude-based normalization process preserves proportional relationships across
dimensions, and the reduced dataset is used to train Hidden Markov Models (HMMs),
where continuous trajectories are discretized into identifier sequences. The algorithm is
evaluated in 2D and 3D environments with datasets combining position and velocity. The
results show that incorporating additional dimensions significantly enhances trajectory
simplification while preserving key information. Additionally, the study highlights the im-
portance of selecting appropriate encoding parameters to achieve optimal resolution. The
HMM-based models generated new trajectories that retained the patterns of the original
demonstrations, demonstrating the algorithm’s capacity to generalize learned behaviors
for trajectory learning in high-dimensional spaces.

Keywords: learning from demonstration; hidden Markov models; data reduction; Douglas–
Peucker algorithm; high-dimensional data encoding

1. Introduction
Robotic trajectories are essential for various applications, including task planning,

energy efficiency optimization, and performing surgical procedures. A robotic trajectory de-
fines the path, speed, and acceleration of a robot’s end effector over time. These trajectories
are typically designed by taking into account variables such as the robot’s kinematics, dy-
namics, and physical constraints, as well as external factors like obstacles and the working
environment [1].

In addition to industrial or service applications, robotic trajectories are also crucial in
robotics research and development. Learning from Demonstration (LfD) is a method for
teaching robots new skills by providing examples of the desired behavior. In the context of
LfD, trajectory learning involves modeling and generalizing the movements demonstrated
by a human operator [2]. The primary advantage of this approach is that it eliminates the
need for extensive technical knowledge to program robots. The intuitive programming
style of LfD has the potential to facilitate robotic applications in both the manufacturing
and service sectors (e.g., clinical, office, or home environments). In robotics, LfD is often
used for skill acquisition at the trajectory level, which involves modeling the demonstrated
set of trajectories and obtaining a generalized representation suitable for reproduction by
a learner robot [3]. To capture the stochastic variations of human movements in demon-
strations, many researchers have employed probabilistic representations of data obtained
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from multiple repetitions of the same skill. For instance, the literature reports the use of
Hidden Markov Models (HMMs) [2–4] and Gaussian Mixture Models (GMMs) [3,5,6] for
modeling task demonstrations at the trajectory level. Additionally, probabilistic movement
primitives (ProMPs) have been a widely-used approach in robot skill learning to model
human motions [7,8]. Among these methods, HMM has been one of the most widely used
techniques in the field of robotics LfD for modeling and analyzing human movements due
to its robustness to spatiotemporal variations in sequential data [2].

While LfD emphasizes the acquisition and generalization of complex human-like
movements for robotic applications, trajectory simplification techniques offer a complemen-
tary approach by optimizing the training data for efficient processing and implementation.
In LfD, trajectory learning often involves high-dimensional data with stochastic variations
inherent to each demonstration, such data can be computationally intensive. Simplifi-
cation algorithms like Douglas–Peucker [9] or Visvalingam–Whyatt [10] can reduce this
complexity by condensing trajectory data without losing essential path characteristics,
thereby enhancing the feasibility and responsiveness of LfD-trained robots in practical
settings. Integrating simplification techniques with LfD could, therefore, improve both
the efficiency and adaptability of robots across various domains, including manufacturing,
service, and clinical environments.

The simplification of geometries and trajectories is a fundamental technique in robotics,
navigation systems, and computer graphics, aimed at reducing the number of points in
paths or contours while preserving their essential shape. This optimization decreases pro-
cessing time, reduces memory consumption, and accelerates trajectory planning. Among
the classic algorithms for this purpose is the Douglas–Peucker algorithm, initially applied
to cartographic generalization, which reduces vertices by removing points from a line based
on a maximum set distance [9]. Another method is the Visvalingam–Whyatt algorithm,
which simplifies by removing points with lower “effective area”, thus preserving the line
structure [10]. The sleeve-fitting approach adapts segments to a virtual “sleeve”, discard-
ing minor variations and facilitating tracking applications [11]. The Reumann–Witkam
algorithm simplifies trajectories by retaining points within a “band” parallel to the initial
segment, making it efficient for straight or slightly curved lines, although it may introduce
distortions in complex trajectories [12].

Most recent studies on geometry and trajectory simplification algorithms focus pri-
marily on two-dimensional or, at most, three-dimensional environments. When additional
dimensions are considered, they typically rely exclusively on motion-related informa-
tion [13]. The main applications of these algorithms include cartographic simplification,
such as web mapping, where modifications to the Douglas–Peucker algorithm have been
proposed to enhance its performance in this domain [14]. Additionally, several meth-
ods have been developed to enable online trajectory simplification for real-time location
services [15].

Some studies have integrated LfD into robotic trajectory generation using simplified
trajectories. For instance, Vakanski et al. [3] employ the Linde–Buzo–Gray (LBG) algo-
rithm [16] to select key points, which are then used in HMMs for trajectory learning. These
approaches highlight the potential of combining trajectory simplification with data-driven
learning techniques to enhance robotic motion planning.

This work explicitly extends trajectory simplification by incorporating additional
parameters beyond position, addressing the challenge of data heterogeneity through
magnitude-based normalization. To achieve this, the Douglas–Peucker algorithm was
selected and modified for implementation in a multidimensional environment. The choice
of this algorithm is based on its computational efficiency, as it employs a recursive approach
for key-point selection, making it well-suited for high-dimensional trajectory processing.
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Specifically, this study evaluates the impact of speed and/or orientation variations
at each trajectory point to determine whether these factors significantly contribute to the
simplification process while preserving essential motion characteristics. By normalizing
different magnitudes, the proposed approach ensures that all parameters are treated consis-
tently, facilitating a more accurate and robust simplification framework. This enhancement
enables the method to maintain the structural integrity of trajectories while optimizing
data reduction for subsequent learning models.

The structure of the paper is as follows: Section 2 presents details of the algorithm
used. First, the pre-processing of the generated data is presented, including normalization,
followed by simplification. A detailed explanation of the proposed n-dimensional Douglas–
Peucker algorithm is provided. Next, the implementation of the HMM is explained,
specifying the generation of the training data and the initial matrices provided to a model
devoted to generating new robotic trajectories that meet the requirements of the key points.

The results of the proposed experiments are presented in Section 3, applying the
procedure to digitally generated trajectories in two-dimensional and three-dimensional
spaces. These experiments are conducted using, on the one hand, only position data and, on
the other hand, the combined position–velocity dataset. Finally, the Section 4 outlines the
improvements that should be included in order to analyze more complicated approaches.

2. Materials and Methods
Figure 1 outlines the step-by-step methodology for processing data in the study. It

begins with trajectory data generation, followed by a normalization by magnitudes to
ensure the homogeneous treatment of the data. Next, it undergoes feature extraction
through the Douglas–Peucker simplification to identify key parameters. The extracted
features are then fed into a machine learning model and trained using hidden Markov
models to learn complex patterns from the data. This stage includes defining the transition
and emission matrices. Finally, the system outputs the predicted states to be decoded into
the proposed trajectory.

Figure 1. Flowchart of the proposed framework.
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2.1. The 2D/3D Data Generation

Two-dimensional and three-dimensional trajectories are generated at a constant fre-
quency, with each trajectory repeated at both constant and variable speeds at different
points. To create a more extensive dataset suitable for training the learning model, random
noise of 5% is added to positions and 3% to velocities.

The trajectories generated in two-dimensional position (X, Y) produce a four-
dimensional dataset, consisting of two position components and two velocity components
(X, Y, Vx, Vy). Similarly, the trajectories generated in three-dimensional position (X, Y, Z)
yield a six-dimensional dataset, comprising three position components and three velocity
components (X, Y, Z, Vx, Vy, Vz).

2.2. Magnitude Normalization

Given that the information obtained from the trajectory is heterogeneous (e.g., posi-
tions, velocities), normalizing each dataset individually (e.g., positions along each axis)
leads to a loss of trajectory information. To address this, normalization is carried out
based on magnitude groups, preserving the dimensional proportions and their effect on
the trajectory when selecting characteristic points.

Before beginning the preprocessing, it is crucial to record the maximum (maxi) and
minimum (mini) values of each physical magnitude group. Here, i represents the number of
groups of similar variables. This procedure ensures that each group of physical magnitudes
is normalized with respect to a common range, calculated from the global maximum and
minimum values within the group.

The example in Figure 2a shows a spiral trajectory that moves a distance of 20 units
along the X-axis (from −10 to 10), while on the Y-axis (from 0 to 10) and the Z-axis (from −5
to 5), it moves only 10 units. When calculating the characteristic points without applying
normalization, the result is shown. However, when normalizing by vectors, a similar
displacement is observed across all axes, thereby altering the selection of characteristic
points (Figure 2b). Therefore, normalization by magnitudes (position, velocity, force, etc.)
has been chosen, as shown in Figure 2c, to ensure the correct scaling of the trajectory.

(a) (b) (c)

Figure 2. Simplification of a spiral trajectory with variable speed and 6 dimensions
[X Y Z Vx Vy Vz] using the DP algorithm: (a) Three-dimensional visualization without nor-
malization. (b) DP Simplification normalized by individual vector plane. (c) DP Simplification
normalized by unit groups.
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2.3. N-Dimensional Douglas–Peucker Reduction Algorithm

In order to generate a parametric trajectories library of different simple maneuvers,
an n-dimensional trajectory subsampling method is required, allowing us to reduce the
order of the learned trajectory while defining key points that can be used as measurement
parameters of the trajectory. In addition, a method to represent the obtained key points in
the n-dimensional space and the time associated with said points is required.

The Douglas–Peucker algorithm implemented starts from a matrix R and a tolerance ε;
the matrix R of size n × m, where n is the number of sampled points and m is the dimension
of every point condenses the information from the trajectory points (P) into each row, where
each column corresponds to a specific value (e.g., positions, velocities, forces, etc.).

R = [P1, P2, P3, . . . , Pn]
T (1)

Pi = [Xi, Yi, Zi, Vi, . . . , Fi] f or i : 1 : m (2)

The algorithm verifies that n > 2; if this inequality is not true, R is returned as the
optimized trajectory (Rdp), otherwise the n-dimensional distance d that exists between the
points P1 and Pn is obtained as the Euclidean distance:

d(n) =
√
(Fn − F1)2 + · · ·+ (Yn − Y1)2 + (Xn − X1)2 (3)

Consecutively, it is intended to calculate the perpendicular distance from the line that
connects the points P1 and Pn to the furthest point of the trajectory. With the distance d(n),
an evaluation of the relative positions between the points is conducted. If d(n) is less than
the minimum computable distance in the software, in which the calculation is implemented
(in Matlab: eps = 2.204 × 10−16), then the distance to the furthest point will be calculated
from point P1.

For d(n) < eps:

dp(k) =
√
(Fi − F1)2 + · · ·+ (Yi − Y1)2 + (Xi − X1)2 (4)

To evaluate the perpendicular distance dp(k) between a point Pi and the line formed
by P1 and Pn in an n-dimensional space, it is necessary to construct a square matrix (Ad)
that ensures canonicity. This allows the use of geometric tools to simplify the calculation
as follows:

• The first row corresponds to the coordinates of the first point (P1) of the line written as
[1, X1, Y1, Z1, V1, . . . , F1].

• The second row contains the coordinates of the point of interest Pi, for which the
distance is being evaluated, written as [1, Xi, Yi, Zi, Vi, . . . , Fi]. Where i takes values
from 2 to n − 1.

• The third row includes the coordinates of the second point (Pn) of the line, written as
[1, Xn, Yn, Zn, Vn, . . . , Fn].

• Additional rows are added to complete the matrix, with ones on the upper diagonal
and zeros on the lower diagonal, ensuring the matrix’s canonicity. The number of
additional rows depends on the dimensionality of the space n, as the matrix must be
square with a size of (n + 1)× (n + 1).

The volume calculated by det(Ad) is proportional to the product of the perpendicular
distance dp(k) and the length of the base ∥P1Pn∥, therefore:
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For d(n) > eps:

Ad =



1 X1 Y1 Z1 V1 · · · F1

1 Xi Yi Zi Vi · · · Fi

1 Xn Yn Zn Vn · · · Fk

0 1 1 1 1 · · · 1
0 0 1 1 1 · · · 1
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 1


(5)

dp(k) =

∣∣det(Ad)
∣∣

∥P1Pn∥
(6)

Thus, to find the furthest point in the trajectory, a loop is executed from P2 to Pn−1,
storing the perpendicular distance between the line joining P1 and Pn to each point in the
trajectory dp(k). Where k is the number of evaluated points through the trajectory.

The vector dp stores the distances of the segment of interest of the trajectory to point
k, and the distance with the greatest value is selected from it; assuming that the furthest
point is Pi, the algorithm evaluates if the distance of this point is greater than the tolerance
ε defined for this trajectory. If the distance is greater than the tolerance, a recursive call to
the algorithm is made with two sub-trajectories, the first from P1 to Pi and the second from
Pi to Pn, from which the reduced trajectory is built; on the other hand, if the maximum
distance dp is less than the tolerance then the reduced path (Rdp) will become [P1,Pn].

To illustrate the selection of key points, the n-dimensional Douglas–Peucker algorithm
is applied to a simple trajectory in a two-dimensional space with variable velocity. In cases
where few key points are obtained, there is a risk that significant features of the trajectory
may be lost during the simplification process. In this particular case, the number of points
is directly influenced by the tolerance specified in the simplification algorithm.

In Figure 3a, the selection of points is shown when using only the X and Y coordi-
nates of each trajectory point, resulting in 17 key points. This is compared to Figure 3b,
where velocity information for each axis is included, yielding a total of 26 key points.
Finally, the algorithm’s performance is analyzed using normalized position and velocity
information, as shown in Figure 3c, where 30 key points are obtained. All of the aforemen-
tioned simplifications were performed using the same tolerance, yielding different results
depending on the dataset used.

(a) (b) (c)

Figure 3. Example of key point selection using the n-dimensional Douglas–Peucker reduction
algorithm. All figures display the original trajectory in blue, while the red points represent the
key points selected for each case. (a) Simplification using only normalized position information.
(b) Simplification using only normalized velocity information. (c) Simplification using normalized
information of both position and velocity.
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2.4. Learning from Demonstration Model

In this article, a discrete HMM was implemented, making it necessary to map the
continuous trajectories into a sequence of discrete values. A graphical representation of an
HMM is shown in Figure 4a, where hidden states are denoted with ei and the observable
variables are denoted by ot.

Once the normalized key points of each trajectory are defined, each dimension is
discretized according to the desired resolution, and each value on every dimension is noted
as a basic action (q). It is worth noting that dividing the information into more groups
leads to greater precision but incurs higher computational cost.

(a) (b)

Figure 4. (a) Graphical representation of HMM; (b) 2D Codebook formation representation.

2.4.1. Codebook Formation

Due to the data (Rdp) being normalized by groups within each dimension, according
to Section 2.2, with values ranging between 0 and 1, the data are now interpolated to match
a number of clusters (CB(i)) into which they will be divided (e.g., 20 groups for positions
and 10 groups for velocities), where i indicates the number of groups of homogeneous
variables in the dataset. The value of (CB(i)) is directly related to the desired resolution for
discretizing each variable. The signal is then discretized to the nearest lower integer.

q = [Rdp × CB(i)] (7)

where q represents the discretized value of the signal for each dimension. In order to assign
a code to the discretized values, a matrix is generated. This matrix has a number of columns
equal to the number of data vectors and a number of rows equivalent to the total possible
combinations of the discretized values defined by (CB(i)) for each column.

The combination of different discretized values of q is assigned to a hidden state code
(e) from the discretized values matrix corresponding to an integer of the row position of
this specific combination in the codebook, being ei = [q1, q2, q3, . . . , qn].

Figure 4b illustrates the formation of the codebook for hidden states based on the
discretization of the Cartesian position variables in 2D. It shows that a respective code is as-
signed to each possible combination, allowing the corresponding sequence to be generated.

If the signal has n dimensions and p points, there will be n × p basic actions and
a sequence with a total of p elements. The codebook will then condense all possible
combinations (m). The hidden states will thus be the coded sequence of the combination of
corresponding basic actions.
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m =
max(CB)

∏
i=1

CB(i) (8)

Similarly, the observable variables correspond to the time progression at which each
point is recorded. Based on the assumption that the training trajectories are performed
within a similar timeframe, the time value is normalized and discretized and segmented
into Nt groups to be input into the HMM.

2.4.2. Pre-Training Transmission Matrix

To prevent zero probability estimations for transitions with very low probabilities
that might not be represented in the training sequence, a square pseudo-transition matrix
(Aps) is provided to the training process, indicating that all states initially have an equal
probability of transitioning to another state, where aps(i,i) = 1/m, with m representing the
number of possible hidden states defined by the codebook.

2.4.3. HMM Implementation

The transition (A) matrix, size m×m, and the emission (B) matrix, size m× Nt, where
Nt represents the maximum value that the observable variables can take, which in this case,
corresponds to the maximum value used to discretize the execution time of the trajectory.

The calculation of matrices A and B is implemented in MATLAB 2024b through the
function hmmestimate. This function calculates maximum likelihood estimates of transition
and emission probabilities from a sequence of observable variables along with their corre-
sponding hidden states. A more detailed explanation of the HMM training function can be
found in [17].

The most likely path through the specified HMM is calculated using the transition
matrix A and the emission matrix B. In this context:

• A(i,j) represents the probability of transitioning from state i to state j.
• B(i,k) represents the probability of emitting symbol k from state i.

The Viterbi algorithm leverages these matrices to identify the sequence of states that
maximizes the likelihood of the observed emissions given the model parameters.

This algorithm is implemented using the hmmviterbi function in MATLAB. This func-
tion initializes the model in state 1 at step 0, prior to the first emission. The hmmviterbi
function computes the most likely path based on the assumption that the model starts in
state 1.

2.4.4. De-Codification

Before starting the data preprocessing, the maximum (maxi) and minimum (mini)
values for each dataset were recorded. This step is crucial since the data generated by the
learning from demonstration algorithm are discretized within a specific range defined by
CBi. To map these discretized data back to their original range, as defined by mini and
maxi, a scaling equation is applied:

preal = mini +
(pdiscrete + 0.5) ∗ (maxi − mini)

CB
(9)

where:

• preal : Rescaled value in the original range.
• pdiscrete: Discrete value generated by the model.
• CB: Total number of levels in the discretized range.
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This process enables the conversion of discretized data back into their original physical
scale, preserving consistency with the initial magnitudes of the variables.

3. Results and Discussion
To evaluate this proposal, two types of experiments were conducted. First, the simplifi-

cation and learning of trajectories in a two-dimensional environment were performed, where
data correspond to position only and the complete position–velocity set were provided. The
same process was then repeated for a trajectory in a three-dimensional environment.

Initially, the trajectories, both two-dimensional and three-dimensional, are generated
digitally. To create the training dataset, a set of 100 new trajectories is synthesized by adding
10% random noise to the original trajectory. Once the HMM is trained, a new trajectory is
generated with lower noise (5%), simulating the “ideal” execution of the exercise. From this
trajectory, time-series data are extracted to encode the observable variables, which are
then input into the model to obtain the corresponding hidden states. These hidden states
identify the key points of the new trajectory.

3.1. Two-Dimensional Environment Trajectories

Figure 5a–f illustrates the performance of the simplification algorithm when applied
to a trajectory in a two-dimensional space. The learning process was conducted on both
a two-dimensional dataset, using the coordinate values (X, Y), and a four-dimensional
dataset, incorporating both position coordinates and their corresponding velocities in each
axis (X, Y, Vx, Vy). In both cases, the original trajectory consists of 80 points.

For the two-dimensional simplification, the resulting sets of key points range from as
few as 45 points to 60 points. In contrast, the four-dimensional simplification yields sets
ranging from 39 to 46 points. A random sample of six trajectories from the training set
was selected to be displayed, with each trajectory potentially affected differently by the
applied noise.

For the two-dimensional dataset corresponding to spatial coordinates, each vector’s
values are discretized into 20 CB groups, deemed sufficient to achieve a satisfactory trajec-
tory resolution. On the other hand, for the four-dimensional dataset, the position vectors
are divided into 20 CB groups and the velocity vectors into 10 CB groups, assigning higher
resolution to the position data compared to the velocity data.

Figure 5b,e display sample trajectories from the training dataset in blue, compared to
the trajectory generated by the learning algorithm in red.

Since the hidden states of the generated trajectory are obtained from the HMM using
the observable variables of an “ideal” trajectory, consider an “ideal” trajectory as one
generated with a noise level lower than that of the trajectories used during the training of
the model. An evaluation is conducted to compare the encoded hidden states of the ideal
trajectory with those produced by the HMM. Figure 5c,f illustrate the differences between
the original trajectory (blue), from which the observable variables are extracted for input
into the HMM, and the fitted trajectory generated (red) from the hidden states obtained
from the HMM trained using the 2D position and 4D position–velocity dataset, respectively.
In both cases, the new trajectory closely resembles the original trajectory; however, varia-
tions indicate that the HMM is not simply replicating the trajectory. Instead, the training
data have influenced the HMM’s output, contributing to a new generated response.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Square trajectory performed in a two-dimensional (a–f) and three-dimensional (g–l) space.
(a) Simplification using only 2D position data. (b) Sample of trajectories from the training set (blue),
and trajectory generated by the HMM (red) using only 2D position data. (c) Original HMM test
trajectory (blue). Fitted trajectory (red) obtained from the HMM trained using only 2D position
data. (d) Simplification using the 4D position–velocity dataset. (e) Sample of trajectories from the
training set (blue), and trajectory generated by the HMM (red) using the 4D position–velocity dataset.
(f) Original HMM test trajectory (blue). Fitted trajectory (red) obtained from the HMM trained
using the 4D position–velocity dataset. (g) Simplification using only 3D position data. (h) Sample
of trajectories from the training set (blue), and trajectory generated by the HMM (red) using only
3D position data. (i) Original HMM test trajectory (blue). Fitted trajectory (red) obtained from the
HMM trained using only 3D position data. (j) Simplification using the 6D position–velocity dataset.
(k) Sample of trajectories from the training set (blue), and trajectory generated by the HMM (red)
using the 6D position–velocity dataset. (l) Original HMM test trajectory (blue). Fitted trajectory (red)
obtained from the HMM trained using the 6D position–velocity dataset.
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3.2. Three-Dimensional Environment Trajectories

The results obtained for trajectories in a three-dimensional space are shown in
Figure 5g–l. The learning process was executed using a three-dimensional training dataset
with only the trajectory coordinates (X, Y, Z) (Figure 5g–i) and a six-dimensional dataset
that included position and velocity data (X, Y, Z, Vx, Vy, Vz) (Figure 5j–l). In this example,
the original training trajectory consists of a square displaced along the Z-axis, forming a
spiral composed of 71 points with variable velocity.

Figure 5g,j show a sample of the training data that has been simplified using the
modified Douglas–Peucker algorithm in 3 dimensions and 6 dimensions, respectively.
The simplifications in both cases were performed under the same tolerance. For the 3D case,
the sample contains between 48 and 57 points, while for the 6D case, the sample contains
between 49 and 51 points.

It can be assumed that in the case where only position data are used, the simplification
is directly affected by noise in the signal, as the selection of characteristic points depends
solely on the distance potentially influenced by noise between points. On the other hand,
when velocity is added to the dataset, the weight of this additional variable impacts the
homogeneity of point selection, considering that all trajectories originate from the same
base trajectory.

As in the case of three-dimensional data, two graphs are obtained (Figure 5h,k),
corresponding to a sample from the training set in blue, compared with the trajectory
traced by the points obtained from the HMM in red. The latter closely resembles the traced
trajectories; however, for both the 3D and 6D cases, a displacement is observed at the
upper part of the HMM trajectory in the values relative to the training trajectories. This is
possibly due to the resolution of the encoding groups. The requirement for a significantly
larger matrix, resulting from the exponential increase in hidden states when including
more dimensions, led to minimizing the number of groups of CB into which the codebook
is divided. This reduction could potentially alter the results obtained.

Finally, Figure 5i,l illustrate the difference between the trajectory from which the
observable variables were used to feed the HMM and the fitted curve obtained from the
points corresponding to the hidden states of the HMM. These figures highlight the similarity
between the curves, without one being a replica of the other, as the red trajectory has been
influenced by the training data.

3.3. Influence of Clustering Resolution

Three two-dimensional models are trained according to the desired resolution by
assigning a different number of CB groups to each model. The same test sequence of
observable variables is provided to all models to derive the corresponding hidden states
that trace a new trajectory.

Figure 6 shows the results obtained for 10, 20, and 30 CB groups. A significant visual
difference can be observed between Figure 6a and Figure 6b,c. The resolution with 10 CB
groups is considerably lower. The difference between this trajectory and the one generated
with 20 CB groups is 25.76%, whereas the difference between the trajectories with 20 and
30 CB groups is 11.89%.

It is important to highlight the impact of coding group selection on the computational
cost of model implementation, given the exponential growth of the matrices defining the
HMM. For instance, with 10 CB groups, the codebook consists of 100 elements, and the
transition matrix contains 100× 100 elements. In contrast, 30 CB groups result in a codebook
of 900 elements and a transition matrix with 900 × 900 elements.
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(a) (b) (c)

Figure 6. Example of the effect on resolution caused by selecting a different number of CB groups for
the discretization of hidden states applied to a two-dimensional dataset: (a) 10 CB groups, (b) 20 CB
groups, (c) 30 CB groups.

4. Conclusions
This article presents an alternative approach for selecting characteristic points from a

dense dataset, aiming to reduce data volume while minimizing information loss. The pro-
posed method considers the n dimensions of the dataset, accounting for potential correla-
tions between them. As a result, an enhanced version of the Douglas–Peucker algorithm is
introduced, incorporating the ability to assign corresponding weights to variables beyond
spatial coordinates. This modification directly influences the final selection of simplified
data points, allowing for more flexible and informative trajectory representations.

The primary focus of this characteristic point selection is to enable its use in training
LfD models. Specifically, this study demonstrates its application in learning trajectories
using 2D/3D position datasets and 4D/6D position–velocity datasets, utilizing HMMs.
The results highlight that incorporating additional dimensions into the selection of key
points for trajectory simplification can significantly impact the quality of the preserved
information, providing a broader perspective on the final values chosen.

Previous studies have explored the simplification of datasets for various applications,
primarily in navigation and localization systems [13–15]. These approaches typically focus
on 2D and 3D spaces, whereas the algorithm presented in this work is designed specifically
for pre-processing data intended for LfD models. A key aspect examined in this study is
how trajectory simplification affects the performance of the trained model.

In multidimensional systems, previous research [13] has emphasized the challenge of
introduced errors due to data heterogeneity during simplification. This issue is addressed
in the present study by applying magnitude-based normalization, which allows data to be
treated as a unified set. Additionally, after trajectory simplification and before training the
learning models, careful selection of coding group divisions is essential, as it directly affects
the resolution of the resulting trajectories. A small number of divisions leads to low resolu-
tion, while a larger number improves resolution but may increase computational costs.

Regarding the learning model selected in this study, the literature review highlights
the extensive implementation of HMMs as a widely used tool for modeling human motion
in free-space environments [4]. HMMs have been particularly applied in humanoid robotics
for path planning and obstacle avoidance [2]. This study focuses on employing HMMs as a
trajectory planning method based on imitation learning. The results demonstrate that the
trajectories generated by the HMM include point sequences that are entirely different from
those in the test dataset. This confirms that the model does not merely replicate the training
data but instead generates a new trajectory that is fully influenced by the n-dimensional
simplified training dataset. Consequently, this approach enhances trajectory adaptability
while preserving key motion characteristics extracted from human demonstrations.
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The extension of this work will focus on applying the proposed algorithm to trajecto-
ries captured in an experimental environment, performed by different users and targeted
toward specific applications. Additionally, future work will prioritize carrying out a proof-
of-concept study and evaluating the performance of the presented algorithm against the
existing proposals in the literature.

5. Patents
The results presented in this article are documented and protected under the patent

with File No. EP25382177 filed on 28 February 2025.
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