Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38842
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorManrique-Cordoba, Juliana-
dc.contributor.authorCasa-Lillo, Miguel Ángel de la-
dc.contributor.authorSabater-Navarro, José María-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2026-01-12T11:28:13Z-
dc.date.available2026-01-12T11:28:13Z-
dc.date.created2025-03-
dc.identifier.citationSensors, Vol. 25, Nº7 (2025)es_ES
dc.identifier.issn1424-8220-
dc.identifier.urihttps://hdl.handle.net/11000/38842-
dc.description.abstractThis paper presents an n-dimensional reduction algorithm for Learning from Demonstration (LfD) for robotic path planning, addressing the complexity of highdimensional data. The method extends the Douglas–Peucker algorithm by incorporating velocity and orientation alongside position, enabling more precise trajectory simplification. A magnitude-based normalization process preserves proportional relationships across dimensions, and the reduced dataset is used to train Hidden Markov Models (HMMs), where continuous trajectories are discretized into identifier sequences. The algorithm is evaluated in 2D and 3D environments with datasets combining position and velocity. The results show that incorporating additional dimensions significantly enhances trajectory simplification while preserving key information. Additionally, the study highlights the importance of selecting appropriate encoding parameters to achieve optimal resolution. The HMM-based models generated new trajectories that retained the patterns of the original demonstrations, demonstrating the algorithm’s capacity to generalize learned behaviors for trajectory learning in high-dimensional spaces.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLearning from demonstrationes_ES
dc.subjectHidden Markov modelses_ES
dc.subjectData reductiones_ES
dc.subjectDouglas-Peucker algorithmes_ES
dc.subjectHigh-dimensional data encodinges_ES
dc.titleN-Dimensional Reduction Algorithm for Learning from Demonstration Path Planninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/s25072145es_ES
Aparece en las colecciones:
Artículos - Ingeniería de Sistemas y Automática


Vista previa

Ver/Abrir:
 N-dimensional reduction....pdf

974,06 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.