Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38773

Enhancing shallow water quality monitoring efficiency with deep learning and remote sensing: A case study in Mar Menor

Título :
Enhancing shallow water quality monitoring efficiency with deep learning and remote sensing: A case study in Mar Menor
Autor :
Giménez Manuel, José Ginés
González Espinosa, Martín
Martínez España, Raquel
Cecilia Canales, José María
López Espín, José Juan
Editor :
SAGE Publications
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2024
URI :
https://hdl.handle.net/11000/38773
Resumen :
Satellite remote sensing technology has proven effective in monitoring various environmental parameters, but its efficiency in assessing shallow lakes has been limited. This study applies state-of-the-art machine and deep learning algorithms supported by classical statistic methods to analyze remote sensing data to measure chlorophyll-a (Chl-a) concentration levels. Focused on a shallow coastal lagoon, Mar Menor, this work analyzes statistically daily Sentinel 3 information behaviour and compares Machine Learning and Deep Learning techniques to enhance efficiency and accuracy data of this satellite. Convolutional Neural Networks (CNNs) stand out as a robust choice, capable of delivering excellent results even in the presence of anomalous events. Our findings demonstrate that the CNN-based approach directly utilizing satellite data yields promising results in monitoring shallow lakes, offering enhanced efficiency and robustness. This research contributes to optimizing remote sensing data to and produce a continuous information flow addressed to monitoring shallow aquatic ecosystems with potential environmental management and conservation applications.
Palabras clave/Materias:
environmental intelligence
satellite remote sensing
machine learning
artificial intelligence
IoT
Área de conocimiento :
CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística
CDU: Ciencias aplicadas: Ingeniería. Tecnología: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria: Ingeniería eléctrica. Electrotecnia. Telecomunicaciones
CDU: Ciencias puras y naturales: Matemáticas: Análisis
CDU: Ciencias puras y naturales: Biología: Ecología general y biodiversidad
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3233/AIS-230461
Publicado en:
Journal of Ambient Intelligence and Smart Environments
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.