Título : Enhancing shallow water quality monitoring efficiency with deep learning and remote sensing: A case study in Mar Menor |
Autor : Giménez Manuel, José Ginés González Espinosa, Martín Martínez España, Raquel Cecilia Canales, José María López Espín, José Juan |
Editor : SAGE Publications |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2024 |
URI : https://hdl.handle.net/11000/38773 |
Resumen :
Satellite remote sensing technology has proven effective in monitoring various environmental parameters, but its efficiency in assessing shallow lakes has been limited. This study applies state-of-the-art machine and deep learning algorithms supported by classical statistic methods to analyze remote sensing data to measure chlorophyll-a (Chl-a) concentration levels. Focused on a shallow coastal lagoon, Mar Menor, this work analyzes statistically daily Sentinel 3 information behaviour and compares Machine Learning and Deep Learning techniques to enhance efficiency and accuracy data of this satellite. Convolutional Neural Networks (CNNs) stand out as a robust choice, capable of delivering excellent results even in the presence of anomalous events. Our findings demonstrate that the CNN-based approach directly utilizing satellite data yields promising results in monitoring shallow lakes, offering enhanced efficiency and robustness. This research contributes to optimizing remote sensing data to and produce a continuous information flow addressed to monitoring shallow aquatic ecosystems with potential environmental management and conservation applications.
|
Palabras clave/Materias: environmental intelligence satellite remote sensing machine learning artificial intelligence IoT |
Área de conocimiento : CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística CDU: Ciencias aplicadas: Ingeniería. Tecnología: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria: Ingeniería eléctrica. Electrotecnia. Telecomunicaciones CDU: Ciencias puras y naturales: Matemáticas: Análisis CDU: Ciencias puras y naturales: Biología: Ecología general y biodiversidad |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.3233/AIS-230461 |
Publicado en: Journal of Ambient Intelligence and Smart Environments |
Aparece en las colecciones: Artículos - Estadística, Matemáticas e Informática
|