Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38773
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGiménez Manuel, José Ginés-
dc.contributor.authorGonzález Espinosa, Martín-
dc.contributor.authorMartínez España, Raquel-
dc.contributor.authorCecilia Canales, José María-
dc.contributor.authorLópez Espín, José Juan-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-11T07:54:38Z-
dc.date.available2025-12-11T07:54:38Z-
dc.date.created2024-
dc.identifier.citationJournal of Ambient Intelligence and Smart Environmentses_ES
dc.identifier.issn1876-1372-
dc.identifier.issn1876-1364-
dc.identifier.urihttps://hdl.handle.net/11000/38773-
dc.description.abstractSatellite remote sensing technology has proven effective in monitoring various environmental parameters, but its efficiency in assessing shallow lakes has been limited. This study applies state-of-the-art machine and deep learning algorithms supported by classical statistic methods to analyze remote sensing data to measure chlorophyll-a (Chl-a) concentration levels. Focused on a shallow coastal lagoon, Mar Menor, this work analyzes statistically daily Sentinel 3 information behaviour and compares Machine Learning and Deep Learning techniques to enhance efficiency and accuracy data of this satellite. Convolutional Neural Networks (CNNs) stand out as a robust choice, capable of delivering excellent results even in the presence of anomalous events. Our findings demonstrate that the CNN-based approach directly utilizing satellite data yields promising results in monitoring shallow lakes, offering enhanced efficiency and robustness. This research contributes to optimizing remote sensing data to and produce a continuous information flow addressed to monitoring shallow aquatic ecosystems with potential environmental management and conservation applications.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent16es_ES
dc.language.isoenges_ES
dc.publisherSAGE Publicationses_ES
dc.relation.ispartofseriesVol. 17es_ES
dc.relation.ispartofseriesnº 2es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectenvironmental intelligencees_ES
dc.subjectsatellite remote sensinges_ES
dc.subjectmachine learninges_ES
dc.subjectartificial intelligencees_ES
dc.subjectIoTes_ES
dc.subject.otherCDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística::311 - Estadísticaes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria::621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicacioneses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisises_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::57 - Biología::574 - Ecología general y biodiversidades_ES
dc.titleEnhancing shallow water quality monitoring efficiency with deep learning and remote sensing: A case study in Mar Menores_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3233/AIS-230461es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 2024_Enhancing-shallow-water-quality-monitoring-efficiency-with-deep-learning-and-remote-sensing-a-case.pdf

493,06 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.