Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/38773Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Giménez Manuel, José Ginés | - |
| dc.contributor.author | González Espinosa, Martín | - |
| dc.contributor.author | Martínez España, Raquel | - |
| dc.contributor.author | Cecilia Canales, José María | - |
| dc.contributor.author | López Espín, José Juan | - |
| dc.contributor.other | Departamentos de la UMH::Estadística, Matemáticas e Informática | es_ES |
| dc.date.accessioned | 2025-12-11T07:54:38Z | - |
| dc.date.available | 2025-12-11T07:54:38Z | - |
| dc.date.created | 2024 | - |
| dc.identifier.citation | Journal of Ambient Intelligence and Smart Environments | es_ES |
| dc.identifier.issn | 1876-1372 | - |
| dc.identifier.issn | 1876-1364 | - |
| dc.identifier.uri | https://hdl.handle.net/11000/38773 | - |
| dc.description.abstract | Satellite remote sensing technology has proven effective in monitoring various environmental parameters, but its efficiency in assessing shallow lakes has been limited. This study applies state-of-the-art machine and deep learning algorithms supported by classical statistic methods to analyze remote sensing data to measure chlorophyll-a (Chl-a) concentration levels. Focused on a shallow coastal lagoon, Mar Menor, this work analyzes statistically daily Sentinel 3 information behaviour and compares Machine Learning and Deep Learning techniques to enhance efficiency and accuracy data of this satellite. Convolutional Neural Networks (CNNs) stand out as a robust choice, capable of delivering excellent results even in the presence of anomalous events. Our findings demonstrate that the CNN-based approach directly utilizing satellite data yields promising results in monitoring shallow lakes, offering enhanced efficiency and robustness. This research contributes to optimizing remote sensing data to and produce a continuous information flow addressed to monitoring shallow aquatic ecosystems with potential environmental management and conservation applications. | es_ES |
| dc.format | application/pdf | es_ES |
| dc.format.extent | 16 | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | SAGE Publications | es_ES |
| dc.relation.ispartofseries | Vol. 17 | es_ES |
| dc.relation.ispartofseries | nº 2 | es_ES |
| dc.rights | info:eu-repo/semantics/openAccess | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | environmental intelligence | es_ES |
| dc.subject | satellite remote sensing | es_ES |
| dc.subject | machine learning | es_ES |
| dc.subject | artificial intelligence | es_ES |
| dc.subject | IoT | es_ES |
| dc.subject.other | CDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística::311 - Estadística | es_ES |
| dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria::621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicaciones | es_ES |
| dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisis | es_ES |
| dc.subject.other | CDU::5 - Ciencias puras y naturales::57 - Biología::574 - Ecología general y biodiversidad | es_ES |
| dc.title | Enhancing shallow water quality monitoring efficiency with deep learning and remote sensing: A case study in Mar Menor | es_ES |
| dc.type | info:eu-repo/semantics/article | es_ES |
| dc.relation.publisherversion | https://doi.org/10.3233/AIS-230461 | es_ES |

Ver/Abrir:
2024_Enhancing-shallow-water-quality-monitoring-efficiency-with-deep-learning-and-remote-sensing-a-case.pdf
493,06 kB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.
.png)