Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38395
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorQuiles, Vicente-
dc.contributor.authorFerrero, Laura-
dc.contributor.authorIáñez, Eduardo-
dc.contributor.authorOrtiz, Mario-
dc.contributor.authorCano, José M.-
dc.contributor.authorAzorín, José M.-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2025-11-24T08:36:46Z-
dc.date.available2025-11-24T08:36:46Z-
dc.date.created2022-01-01-
dc.identifier.citationApplied Sciences, 2022, 12(1), 415es_ES
dc.identifier.issn2076-3417-
dc.identifier.urihttps://hdl.handle.net/11000/38395-
dc.description.abstractControl of assistive devices by voluntary user intention is an underdeveloped topic in the Brain–Machine Interfaces (BMI) literature. In this work, a preliminary real-time BMI for the speed control of an exoskeleton is presented. First, an offline analysis for the selection of the intention patterns based on the optimum features and electrodes is proposed. This is carried out comparing three different classification models: monotonous walk vs. increasing and decreasing change speed intentions, monotonous walk vs. only increasing intention, and monotonous walk vs. only decreasing intention. The results indicate that, among the features tested, the most suitable parameter to represent these models are the Hjorth statistics in alpha and beta frequency bands. The average offline classification accuracy for the offline cross-validation of the three models obtained is 68 ± 11%. This selection is also tested following a pseudo-online analysis, simulating a real-time detection of the subject’s intentions to change speed. The average results indices of the three models during this pseudoanalysis are of a 42% true positive ratio and a false positive rate per minute of 9. Finally, in order to check the viability of the approach with an exoskeleton, a case of study is presented. During the experimental session, the pros and cons of the implementation of a closed-loop control of speed change for the H3 exoskeleton through EEG analysis are commented.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent20es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectexoskeletones_ES
dc.subjectbrain–machine interfacees_ES
dc.subjectelectroencefalographyces_ES
dc.subjectevent related (de)syncronizationes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleDetecting the Speed Change Intention from EEG Signals: From the Offline and Pseudo-Online Analysis to an Online Closed-Loop Validationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/app12010415es_ES
Aparece en las colecciones:
Artículos Ingeniería Mecánica y Energía


thumbnail_pdf
Ver/Abrir:
 Detecting the Speed Change Intention from EEG Signals From the Offline and Pseudo-Online Analysis to an Online Closed-Loop Validation.pdf

1,52 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.