Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/38362
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNúñez‑Delegido, Emilio-
dc.contributor.authorTeruel‑Elvira, Pablo-
dc.contributor.authorRobles, Pedro-
dc.contributor.authorSeller‑Lozano, Aitana-
dc.contributor.authorDomínguez‑Espinosa, David-
dc.contributor.authorQuesada, Víctor-
dc.contributor.otherDepartamentos de la UMH::Biología Aplicadaes_ES
dc.date.accessioned2025-11-21T10:05:08Z-
dc.date.available2025-11-21T10:05:08Z-
dc.date.created2025-02-
dc.identifier.citationPlant Growth Regulation, 2025) 105:429–448es_ES
dc.identifier.issn1573-5087-
dc.identifier.issn0167-6903-
dc.identifier.urihttps://hdl.handle.net/11000/38362-
dc.description.abstractMitochondria ribosomes, or mitoribosomes, reflect the endosymbiotic origin of this organelle. Mitoribosomes are made up of RNAs and proteins (mitochondrial ribosomal proteins, MRPs). Considering the large amount of MRPs identified in plant mitoribosomes, the number of MRPs for which mutations producing mutant phenotypes have been hitherto reported is rather limited. Moreover, the contribution of plant mitoribosomes, and hence mitochondrial translation, to abiotic stress, is almost completely unknown. To advance knowledge about the role of mitochondrial translation in plant development and stress acclimation, we performed a thorough genetic and phenotypic analysis of the Arabidopsis mrpl1-1 and 3 mutants affected in the MRPL1 (MITOCHONDRIAL RIBOSOMAL PROTEIN L1) gene encoding MRP uL1m. Compared to the wild type, the mrpl1-1 and 3 mutants show delayed growth, small body size and smaller leaf palisade cells, although the morphology of chloroplasts and mitochondria is similar. We identified a novel MRPL1 mutant allele, mrpl1-2, that causes early seedling lethality, which reveals that Arabidopsis MRPL1 is an essential gene. Furthermore, the mrpl1 viable mutants are less responsive than the wild type to increased growth temperature, and are hypersensitive to antibiotics doxycycline and chloramphenicol, and also to salt, osmotic and ABA stress. In summary, impaired MRPL1 function severely hinders plant growth and development, likely by triggering retrograde signaling due to translational perturbation, and it enhances sensitivity to abiotic stress. Besides, our results support a role for mitochondria translation in acclimation to adverse environmental conditions. To our knowledge this is the first work to report an altered abiotic stress sensitivity phenotype due to mutations in a plant MRP gene.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent20es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMitochondrial ribosomal proteines_ES
dc.subjectMRPL1 genees_ES
dc.subjectArabidopsises_ES
dc.subjectAbiotic stress tolerancees_ES
dc.subjectPlant growth and developmentes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::57 - Biología::576 - Biología celular y subcelular. Citologíaes_ES
dc.titleMutations in the plant‑conserved uL1m mitochondrial ribosomal protein significantly affect development, growth and abiotic stress tolerance in Arabidopsis thalianaes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s10725-025-01282-xes_ES
Appears in Collections:
Artículos - Biología Aplicada


thumbnail_pdf
View/Open:
 Nuñez Delegido et al 2025 s10725-025-01282-x (1).pdf

2,48 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???