Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/38232Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Riaz, Syed Morsleen | - |
| dc.contributor.author | Lucas-Estañ, M. Carmen | - |
| dc.contributor.author | Coll-Perales, Baldomero | - |
| dc.contributor.author | Gozalvez, Javier | - |
| dc.contributor.other | Departamentos de la UMH::Ingeniería de Comunicaciones | es_ES |
| dc.date.accessioned | 2025-11-17T11:46:48Z | - |
| dc.date.available | 2025-11-17T11:46:48Z | - |
| dc.date.created | 2025 | - |
| dc.identifier.citation | 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring), | es_ES |
| dc.identifier.isbn | 2577-2465 | - |
| dc.identifier.uri | https://hdl.handle.net/11000/38232 | - |
| dc.description.abstract | Future wireless networks must enhance their capacity to sustain deterministic service levels and support emerging time-sensitive services in key verticals. The ability to guarantee bounded latencies heavily depends on efficient radio resource management. Configured Grant (CG) scheduling can reduce latency by pre-allocating resources, but its effectiveness and efficiency decrease under variable traffic patterns. This study presents a novel predictive CG scheduling scheme that pre-allocates resources based on traffic predictions while accounting for prediction inaccuracies. By considering these inaccuracies, the scheme significantly improves the ability to meet bounded latency requirements, which are essential for supporting deterministic service levels. Our evaluations show that the proposed scheme significantly enhances the capacity to support deterministic service levels while improving resource utilization, even in scenarios with variable and mixed traffic flows with diverse requirements. | es_ES |
| dc.format | application/pdf | es_ES |
| dc.format.extent | 5 | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | IEEE | es_ES |
| dc.relation.ispartof | 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring), | es_ES |
| dc.rights | info:eu-repo/semantics/openAccess | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Scheduling | es_ES |
| dc.subject | Configured grant | es_ES |
| dc.subject | Predictive | es_ES |
| dc.subject | Deterministic | es_ES |
| dc.subject | Time-sensitive | es_ES |
| dc.subject | 5G | es_ES |
| dc.subject | 6G | es_ES |
| dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria::621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicaciones | es_ES |
| dc.title | Predictive Configured Grant Scheduling for Deterministic Wireless Communications | es_ES |
| dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
| dc.relation.publisherversion | https://doi.org/10.1109/VTC2025-Spring65109.2025.11174458 | es_ES |

View/Open:
VTC2025-PredictiveCG-SyedLucas-web.pdf
484,39 kB
Adobe PDF
Share:
.png)
