Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36842

Detection of UAVs on a collision course using optical flow


Vista previa

Ver/Abrir:
 Camera_ready_CE035.pdf

3,6 MB
Adobe PDF
Compartir:
Título :
Detection of UAVs on a collision course using optical flow
Autor :
Cabrera, Juan José
Gil, Arturo
Payá, Luis
Santo, Antonio
Reinoso, Oscar
Rodríguez, David
Editor :
ACM Digital Library
Departamento:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Fecha de publicación:
2024
URI :
https://hdl.handle.net/11000/36842
Resumen :
This paper presents a method to detect, track and predict a potential collision with UAVs using an aircraft equipped with a single camera. The method analyses the movement in the camera’s image plane by means of sparse optical flow. In this way, the camera’s own movement can be modelled and cancelled by estimating a homography matrix from a set of corresponding points. Once the movement caused by the camera is cancelled other moving objects can be isolated and the presence of other UAVs can be detected. Additionally, the method predicts potential collisions by examining the alignment between the position and velocity vectors of the UAV, which are estimated up to a scale factor. The proposed method is effective at detecting and predicting collisions with UAVs, regardless of their appearance, size, or movement, making it useful for applications related to airspace security.
Palabras clave/Materias:
optical flow
UAV detection
collision prediction
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
10.1145/3674746.3674795
Publicado en:
RobCE '24: Proceedings of the 2024 4th International Conference on Robotics and Control Engineering
Aparece en las colecciones:
Artículos - Ingeniería de Sistemas y Automática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.