Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36840

Evaluation of Open-Source OCR Libraries for Scene Text Recognition in the Presence of Fisheye Distortion


Vista previa

Ver/Abrir:
 2024-ICINCO-OCR.pdf

2 MB
Adobe PDF
Compartir:
Título :
Evaluation of Open-Source OCR Libraries for Scene Text Recognition in the Presence of Fisheye Distortion
Autor :
Flores, María
Valiente, David
Alfaro, Marcos
Fabregat-Jaénn, Marc
Payá, Luis
Editor :
SCITEPRESS – Science and Technology Publications, Lda.
Departamento:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Fecha de publicación:
2024
URI :
https://hdl.handle.net/11000/36840
Resumen :
Due to the rich and precise semantic information that text provides, scene text recognition is relevant in a wide range of vision-based applications. In recent years, the use of vision systems that combine a camera and a fisheye lens is common in a variety of applications. The addition of a fisheye lens has the great advantage of capturing a wider field of view, but this causes a great deal of distortion, making certain tasks challenging. In many applications, such as localization or mapping for a mobile robot, the algorithms work directly with fisheye images (i.e. distortion is not corrected). For this reason, the principal objective of this work is to study the effectiveness of some OCR (Optical Character Recognition) open-source libraries applied to images with fisheye distortion. Since no scene text dataset of this kind of image has been found, this work also generates a synthetic image dataset. A fisheye model which varies some parameters is applied to standard images of a benchmark scene text dataset to generate the proposed dataset.
Palabras clave/Materias:
Scene Text Recognition
Fisheye Distortion
Optical Character Recognition
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
10.5220/0000193700003822
Publicado en:
21st International Conference on Informatics in Control, Automation and Robotics (Porto, Portugal, 18-20 November, 2024) Volume 2, pp. 166-173
Aparece en las colecciones:
Congresos, ponencias y comunicaciones - Ingeniería de Sistemas y Automática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.