Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/35269

Enhancing Greenhouse Efficiency: Integrating IoT and Reinforcement Learning for Optimized Climate Control

Title:
Enhancing Greenhouse Efficiency: Integrating IoT and Reinforcement Learning for Optimized Climate Control
Authors:
Platero Horcajadas, Manuel  
Pardo Pina, Sofía
Cámara-Zapata, José-María  
Brenes Carranza, José Antonio  
ferrández-pastor, francisco-javier  
Editor:
MDPI
Department:
Departamentos de la UMH::Física Aplicada
Issue Date:
2024-12-19
URI:
https://hdl.handle.net/11000/35269
Abstract:
Automated systems, regulated by algorithmic protocols and predefined set-points for feedback control, require the oversight and fine tuning of skilled technicians. This necessity is particularly pronounced in automated greenhouses, where optimal environmental conditions depend on the specialized kn...  Ver más
Keywords/Subjects:
Smart agriculture
Reinforcement learning
IoT
Greenhouse energy management
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.3390/s24248109
Published in:
Sensors 2024, 24(24), 8109
Appears in Collections:
Artículos Física Aplicada



Creative Commons ???jsp.display-item.text9???