Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/35269
Enhancing Greenhouse Efficiency: Integrating IoT and Reinforcement Learning for Optimized Climate Control
Title: Enhancing Greenhouse Efficiency: Integrating IoT and Reinforcement Learning for Optimized Climate Control |
Authors: Platero Horcajadas, Manuel  Pardo Pina, Sofía Cámara-Zapata, José-María  Brenes Carranza, José Antonio  ferrández-pastor, francisco-javier  |
Editor: MDPI |
Department: Departamentos de la UMH::Física Aplicada |
Issue Date: 2024-12-19 |
URI: https://hdl.handle.net/11000/35269 |
Abstract:
Automated systems, regulated by algorithmic protocols and predefined set-points for feedback control, require the oversight and fine tuning of skilled technicians. This necessity is particularly pronounced in automated greenhouses, where optimal environmental conditions depend on the specialized kn... Ver más
|
Keywords/Subjects: Smart agriculture Reinforcement learning IoT Greenhouse energy management |
Type of document: info:eu-repo/semantics/article |
Access rights: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI: https://doi.org/10.3390/s24248109 |
Published in: Sensors 2024, 24(24), 8109 |
Appears in Collections: Artículos Física Aplicada
|
???jsp.display-item.text9???