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Abstract: Automated systems, regulated by algorithmic protocols and predefined set-points for
feedback control, require the oversight and fine tuning of skilled technicians. This necessity is
particularly pronounced in automated greenhouses, where optimal environmental conditions depend
on the specialized knowledge of dedicated technicians, emphasizing the need for expert involvement
during installation and maintenance. To address these challenges, this study proposes the integration
of data acquisition technologies using Internet of Things (IoT) protocols and optimization services
via reinforcement learning (RL) methodologies. The proposed model was tested in an industrial
production greenhouse for the cultivation of industrial hemp, applying adapted strategies to the
crop, and was guided by an agronomic technician knowledgeable about the plant. The expertise
of this technician was crucial in transferring the RL model to a real-world automated greenhouse
equipped with IoT technology. The study concludes that the integration of IoT and RL technologies
is effective, validating the model’s ability to manage and optimize greenhouse operations efficiently
and adapt to different types of crops. Moreover, this integration not only enhances operational
efficiency but also reduces the need for constant human intervention, thereby minimizing labor costs
and increasing scalability for larger agricultural enterprises. Furthermore, the RL-based control has
demonstrated its ability to maintain selected temperatures and achieve energy savings compared to
classical control methods.

Keywords: smart agriculture; reinforcement learning; IoT; greenhouse energy management

1. Introduction

The integration of IoT and RL creates an intelligent and adaptive control system for
greenhouses. IoT sensors provide a constant flow of accurate information, which RL algo-
rithms then process to optimize growing conditions. Automated systems implement the
decisions made by RL, and the system constantly improves on the basis of the results ob-
tained. This synergy allows for more efficient resource management, increased productivity,
and better adaptation to changing conditions, which is crucial in the current context of
climate change and food security. By combining the data collection capabilities of IoT with
the decision-making power of RL, greenhouse operators can create a self-improvement
system that continuously adapts to changing environmental conditions and plant needs.
This integration not only improves crop yield and quality but also contributes to sustainable
agriculture practices by optimizing resource use. As climate change continues to pose
challenges to traditional farming methods, the integrated IoT-RL approach in greenhouses
offers a promising solution to ensure food security in an environmentally responsible
way. This paper is structured as follows. Section 2 provides a comprehensive review of
the literature, highlighting key contributions and future research directions in the use of
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reinforcement learning (RL) for energy management in greenhouses. Section 3 presents
materials and methods. In Section 3.1, we present the proposed model, detailing the inte-
gration of IoT and RL technologies for optimized climate control in greenhouses. Section 3.2
discusses the methodology, including the phases of development of control strategies, IoT
infrastructure design, dataset generation, and the application of digital models and RL
algorithms. The IoT infrastructure is proposed in Section 3.3. In Section 3.4, we analyze
the generation of dataset and the materials used. Section 3.5 proposes the RL algorithm
based on the model. Section 3.6 implements and evaluates the RL agent, comparing its
performance with traditional control methods. Finally, Sections 4 and 5 conclude the article,
summarizing the findings and discussing the implications for future research and practical
applications in greenhouse management.

Automated greenhouse systems require the meticulous configuration of diverse pa-
rameters to guarantee that the actuators execute the designated functions accurately. This
configuration entails the determination of appropriate set-points for various subsystems
including climate, lighting, and irrigation control. Typically, these parameters and control
rules are reactive. In recent years, numerous studies have advanced models based on set-
point selection strategies employing various heuristic or artificial intelligence paradigms
coupled with the implementation of predictive solutions. The application of reinforcement
learning (RL) to greenhouse management has gained significant attention in recent years
due to its potential to optimize energy usage and automate various control processes. This
section provides an overview of the most relevant studies categorized by their approaches
and contributions.

2. Literature Review

The use of reinforcement learning (RL) in the energy management of greenhouses
and precision agriculture techniques has evolved significantly. This analysis is based on
the references provided, which highlight key contributions in this field. Future research
directions are also discussed. This paper reviews key contributions to the field, analyzes
their contributions, and discusses future research directions.

Kiumarsi et al. [1] present a comprehensive survey and implementation guidelines for
optimal and autonomous control using RL. They discuss applications in complex systems,
emphasizing their potential to enhance energy efficiency and reduce operational costs in
greenhouses. Perera et al. [2] review various applications of RL in energy management from
generation to consumption. They highlight specific cases of intelligent greenhouses that
use RL to optimize energy use. Wang et al. [3] present an RL controller based on recurring
neural networks based on Long Short-Term Memory (LSTM) for microgrid management
with potential applications in greenhouses.

Kazmi et al. [4] explore the use of deep RL for optimal control in hybrid energy systems
of buildings, which is applicable to energy management in greenhouses. Ruelens et al. [5]
examine the application of RL in electric water heaters with direct implications for energy
management in greenhouses.

Zhang et al. [6] discuss the developments and future challenges in precision agriculture,
including the integration of RL for better resource management in greenhouses. Liu et al. [6]
provide a comprehensive review of RL applications in smart agriculture, highlighting
various use cases and the potential benefits of RL in optimizing agricultural processes,
including greenhouse energy management.

Mason et al. [7] review the applications of RL in smart grids, discussing how these
methods can be applied to improve energy management and efficiency in interconnected
systems such as greenhouses. Hosseinloo et al. [8] explore data-driven predictive control
using RL for energy efficiency and comfort management in buildings with potential appli-
cations in greenhouses to optimize climate control systems. Sun et al. [9] present a study on
multi-agent RL for the integrated energy management of interconnected microgrids, which
is applicable to complex greenhouse energy systems. Alani et al. [10] discuss the opportu-
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nities and challenges of RL-based energy management for smart homes and buildings with
insights applicable to greenhouse energy systems.

Fu et al. [11] survey the applications of RL in building energy management, pro-
viding information relevant to greenhouse energy systems. Mauree et al. [12] review
data-driven and machine learning models for building energy performance prediction,
fault detection, and optimization, all of which are applicable to greenhouse energy man-
agement. Kazmi et al. [13] discuss the application of multi-agent RL for building energy
management with potential benefits for greenhouse systems. Yang et al. [14] explore
energy optimization in smart home buildings using deep RL, providing information for
greenhouse energy management.

Ruelens et al. [15] discuss learning sequential decision making for the optimal con-
trol of thermally activated resources, which is applicable to greenhouse energy systems.
Véazquez-Canteli and Henze [16] discuss the integration of reinforcement learning with
predictive control of the model for the response to demand in buildings, which can be
applied to optimize energy management in greenhouses. Sutton and Barto [17] discuss the
application of RL in real-world games, providing insights that can be adapted to complex
energy management systems in greenhouses. Peters et al. [18] discuss a reinforcement
learning approach to autonomous vehicles, which can provide insights for autonomous
control in greenhouse energy systems. Kar et al. [19] present QD learning, which is a
collaborative Q-learning approach that can be applied to cooperative energy management
strategies in greenhouses.

Sierla et al. [20] review reinforcement learning applications in urban energy systems,
which can provide valuable information for energy management in greenhouse environ-
ments. Vazquez-Canteli and Nagy [21] discuss reinforcement learning for demand response,
which is highly relevant for dynamic energy management in greenhouses. Mauree et al. [12]
review assessment methods for urban environments, providing methodologies that can be
adapted to evaluate energy performance in greenhouses.

2.1. Future Research Directions

Despite significant advancements, several areas require further exploration to fully
implement RL in greenhouse energy management.

¢ Integration with IoT: The integration of RL with IoT devices can enhance real-time
data acquisition and decision-making processes in greenhouses. Future research
should focus on developing seamless IoT-RL integration frameworks.

®  Scalability: Research on scaling RL solutions to larger, more complex greenhouse
systems is necessary to ensure widespread adoption. Studies should address compu-
tational challenges and the ability to handle large datasets.

¢ Interdisciplinary Approaches: Combining RL with other AI techniques, such as
genetic algorithms and fuzzy logic, could yield more robust energy management
solutions. The exploration of hybrid models that leverage the strengths of different Al
paradigms is essential.

¢  Environmental Adaptability: Developing RL algorithms capable of adapting to
diverse environmental conditions will be crucial for global applications. This includes
designing algorithms that can learn and adapt to changing weather patterns, pest
infestations, and other environmental variables.

*  Economic Viability: Studies on the cost-effectiveness of RL implementations in green-
houses can drive commercial interest and investment. Future research should focus
on performing cost—benefit analyses and developing business models that highlight
the economic advantages of RL-based energy management systems.

e  User-Friendly Interfaces: Developing user-friendly interfaces and control systems
for greenhouse operators is vital for the practical implementation of RL. Research
should focus on creating intuitive dashboards and control panels that allow operators
to easily interact with and oversee RL systems.
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*  Sustainability Metrics: Future work should also explore the development of sustain-
ability metrics that RL systems can optimize. This includes not only energy efficiency
but also water usage, pesticide application, and overall environmental impact.

*  Policy and Regulatory Compliance: Research should address how RL systems can be
designed to comply with local and international policies and regulations concerning
energy usage and environmental protection.

e  Data Privacy and Security: With the increasing use of IoT and RL, ensuring data
privacy and security is essential. Future research should develop robust security
protocols to protect sensitive data in greenhouse management systems.

* Real-World Case Studies: Conducting real-world case studies and pilot projects can
provide valuable insights into the practical challenges and benefits of implementing
RL in greenhouses. These studies can help refine RL models and identify best practices
for successful adoption.

2.2. Literature Review Conclusions

The RL paradigm has shown significant potential to optimize energy management
in greenhouses and precision agriculture techniques. From optimal autonomous control
to deep RL, the reviewed references indicate a growing trend toward intelligent, adap-
tive solutions that promote energy efficiency and sustainability. Future research should
focus on integrating RL with IoT, scalability, interdisciplinary approaches, environmen-
tal adaptability, economic viability, user-friendly interfaces, sustainability metrics, policy
compliance, data privacy and security, and real-world case studies to further advance this
technological evolution.

In conclusion, the field of reinforcement learning for greenhouse management has
made significant progress, yet challenges remain. Future research should focus on improv-
ing scalability, integrating advanced technologies, and developing hybrid models to fully
realize the potential of RL in this domain.

3. Materials and Methods
3.1. Model Proposed

The reinforcement learning (RL) problem involves a digital agent exploring an environ-
ment to achieve a specific goal. In the field of automated greenhouses, it is about managing
environmental conditions and crop growth while optimizing resources and inputs. RL is
based on the hypothesis that all goals can be characterized by maximizing the expected cumu-
lative reward. The agent must learn to perceive and manipulate the state of the environment
through its actions to optimize this reward. In the model presented in this work, the agent
performs control actions to adjust the set-points, ensuring that the internal conditions of the
greenhouse stay within the predefined maximum and minimum limits. By doing so, the
agent optimizes the management of resources such as water, energy, and inputs, leading to
improved plant growth. Figure 1 shows the application scenario of the RL paradigm.

The system must be able to collect relevant data, establish the necessary sensors and
communication protocols, and manage them appropriately using the IOT paradigm.

The proposed model uses a layered architecture (Figure 2) to integrate the services
and functionalities of the platform (IoT + RL). In an agricultural facility, whether newly
constructed or already operational, monitoring and actuation devices are installed and inter-
faced with the processing and control layer. The following provides a detailed description
of each layer.

In the physical layer, IoT sensors/actuators, human-machine interfaces (HMIs) and
machine-to-machine interfaces (MMIs) are installed. The farmer and technicians can act by
entering data and requests. The processing layer filters data, executes control actions, and
communicates with the upper layer.

The control layer embedded devices receive data from the upper layer to manage the
different processes and perform control and maintenance actions. This layer must provide
the necessary support to communicate the data to the sensor/actuators installed.
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Figure 1. RL paradigm in greenhouse proposed.
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Figure 2. Layered technological architecture. Relationship between IoT, RL, digital platform and
different interfaces.

The interoperability layer integrates different RL agents connected to digital twin algo-
rithms. The model proposes the development of RL agents to optimize the use of set-point
values in various control loops within an automated facility. The RL agent modifies the
set-point values to achieve one or more specified objectives, such as maintaining environ-
mental conditions, improving electrical consumption, reducing water use, and optimizing
renewable energy use. This process operates automatically and can be analyzed through
an interface where users can test control strategies. This interface enables simulations on a
digital twin model that replicates different states based on the knowledge acquired from
the analyzed data obtained from IoT network sensors. In this layer, the deployment of RL
agents, the development of digital twin functionalities, and the implementation of user
interfaces are executed.

In the application layer, applications are designed and developed on different plat-
forms (mobile phones, business networks, computers, etc.). In each of them, a relationship
is defined between the user and the type of access allowed.
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3.1.1. Development in an Automated Greenhouse

Greenhouses provide a controlled environment for plant cultivation, allowing for im-
proved growth and productivity compared to traditional open-field agriculture. However,
managing a greenhouse efficiently involves complex decision-making processes to balance
resource usage, such as water and energy, with the optimal growing conditions for plants.
Traditional management methods often rely on predefined schedules and heuristics, which
may not adapt well to dynamic environmental conditions and changing plant needs.

Reinforcement learning (RL) offers a promising solution to this challenge by enabling
systems to learn optimal strategies through interactions with the environment. RL algo-
rithms can adapt to changing conditions and learn from experience, making them well
suited to the dynamic and complex nature of greenhouse management. By continuously
adjusting actions based on observed outcomes, RL can optimize resource usage while
maintaining or improving crop yields.

One of the scenarios where the model can be applied is in energy management. In the
case of the use of this work, the model is based on a reinforcement learning algorithm in
the management of greenhouse energy. Specifically, the model employs a prediction model
to forecast the greenhouse’s environmental conditions throughout the day. Based on these
predictions, they implement a reinforcement learning (RL) algorithm that rewards minimal
energy usage to regulate the greenhouse’s temperature. The algorithm refines the temper-
ature control loop by optimizing the choice of the input point for the existing regulation
loop. In essence, the algorithm adjusts the set point value to optimize energy consumption
while maintaining the selected minimum and maximum temperature thresholds.

Incorporating climate predictions into the RL model can further enhance its perfor-
mance by allowing anticipatory adjustments.

Reinforcement learning (RL) offers a promising approach to energy consumption by
learning from the environment and making data-driven decisions. This study focuses
on the Q-learning algorithm, a model-free RL method, to determine the connection and
disconnection of the air conditioning system.

3.1.2. Methodology

The proposed system uses the Q-learning algorithm to make watering decisions based
on real-time data from IoT sensors. The states, variables, actions, and reward function
are designed to reflect the dynamics of the greenhouse environment. The methods are
indicated in Table 1.

Table 1. Method phases.

Phase

Description

Phase 1

Control strategies. Analysis of environmental and control variables with the agronomic expert. Examination of all possible strategies
that can be part of optimization. Strategies for choosing set-points.

Phase 2

IoT infrastructure. Design of the IoT infrastructure needed for the greenhouse to carry out the control and dataset generation.
Deployment of various embedded systems interconnected with the required IoT technologies.

Phase 3

Dataset generation. Sensors generate data that are analyzed to determine greenhouse behavior models. Each greenhouse has specific
characteristics that must be taken into account when applying the model. Datasets are captured in normalized format (csv, json)

Phase 4

Digital model and an RL algorithm. The objective is to maintain the greenhouse temperature between the minimum and maximum
limits by optimizing the connection and disconnect of the air conditioning system. Implementation by comparing all strategies with
those proposed in the model to determine their effectiveness. To act on the installation, a digital model is previously created on which the
RL algorithm begins its calculations. This model will be adjusted to the reality of the behavior in the greenhouse application. Theoretical
analysis validates reward strategies and policies that will be applied.

Phase 5

Training and evaluation. Train the RL agent using the constructed dataset and the results of the analysis, iteratively updating the policy
based on observed rewards and state transitions. With the dataset obtained with the capture of IoT data and the results of the theoretical
simulations, the policies, reward functions, and actions most appropriate to the type of greenhouse and installation are promoted.

3.2. Phase 1: Control Strategies (Set-Point in the Environmental Regulation Loop)

Reinforcement learning (RL) techniques can optimize air conditioning connection
strategies by making decisions based on continuous feedback from plants and the environ-



Sensors 2024, 24, 8109

7 of 24

ment. Various sensors (energy consumption, temperature, humidity, weather data, etc.),
actuators, and a data processing unit must be used. In Table 2, different strategies and their
relationship with IoT technologies are shown.

Table 2. Energy control strategies. standard control vs. RL control.

Strategy

Description IoT Sensors

Set-point selection (standard control)

This is the simplest and most commonly used
strategy. The technician selects the temperature
and the maximum and minimum values

Temperature sensors

Set-point adjustment with RL
algorithm (RL actions) to optimize

energy consumption

The values assigned at the set-point are adjusted
and modified by predicting expected conditions
in the greenhouse. These changes are made at
scheduled sampling times

Temperature, energy consumption,
weather forecast, and temperature
prediction inside the greenhouse

The selection of the appropriate irrigation strategy for greenhouse cultivation depends
on various factors, including crop type, environmental conditions, and resource availability.
Strategies based on substrate moisture, evapotranspiration, and VPD offer customized
approaches to optimize water use, improve crop performance, and promote sustainable
agricultural practices.

3.3. Phase 2: IoT Infrastructure

The IoT infrastructure is designed with the strategy of being interoperable with existing
greenhouse subsystems: climate, lighting, irrigation, etc. To achieve this, it is designed and
developed at two levels.

Figure 3 describes the Internet of Things (IoT) network. Table 3 contains the identifica-
tion of the components according to this figure. The sequence of events and data sequence
are listed below.

Climate
Energy
Sensors

protocol

Intranet Energy

protocol ToT network A1 Climate
Control ¥ Control 7,
.1 in
"
Kk Hy,
Zof T Tl o0 o T
protocol Ho o W UK 1

Cloud Server platform

/\_\

Services

I S

IoT
protocol

Local Server platform
Digital Platform

Figure 3. IoT platform. Basic infrastructure for data capture, analysis and management services.

¢ Climate energy data are captured and stored in the system.

*  Sensors collect environmental conditions.

e The data are sent to the gateway, which then transmits it to the local server and
cloud services.
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e  The data are stored on the local server. The datasets are created with the main variables.

¢ Local and cloud services allow remote monitoring and control of the system.

*  The prediction of the environmental conditions in the next few hours is obtained.

e With the data and predictions, the learning algorithm is executed.

®  The algorithm proposes a modification of the set-point by increasing or decreasing its
value, using the values of the reinforcements or Q values.

Table 3. Identification of components in the IoT network for a solar energy management system.

Number Component Description

1 IoT Gateway or Router: This device acts as a central communication point between various sensors and devices and
the cloud server. It uses IoT protocols to transmit data.

2 Sensors and Meters: These devices collect data from different sources:

2a Energy meter (A-Wh) that measures the amount of energy consumed.

2b Temperature sensor (thermostat) that measures the ambient temperature.

3 Solar Energy Controller: This component receives data from the sensors and manages the distribution of energy.

3a Inverter that converts solar energy from direct current (DC) to alternating current (AC).

3b Batteries for energy storage.

3¢ Switches and fuses for protection.

4 Local Server or Database: Stores and processes data locally. It is where all the data are collected for processing before
being sent to the cloud.

5 Qoud Services: The data are sent to the cloud for additional storage and analysis. Cloud services can provide
interfaces to monitor and control the system.

M Monitoring Computer: Allows users to interact with the system, probably through a graphical interface for real-time

monitoring and control of the system.

3.4. Phase 3: Dataset Generation

Datasets generated from IoT sensors provide a rich source of information for decision
makers. These datasets enable real-time monitoring and analysis, allowing for informed
decision making based on accurate and up-to-date information. In greenhouse facilities,
IoT sensor traffic data can be used to optimize traffic flow, reduce congestion, and improve
public transportation systems. Generating high-quality datasets from IoT sensor data
requires addressing issues related to data quality and consistency. Sensors can produce
noisy or incomplete data, which can affect the accuracy and reliability of the datasets.
Implementing robust data preprocessing and cleaning techniques is essential to ensure the
integrity of the datasets.

Temperature and humidity sensors are located inside and outside the greenhouse,
monitoring the weather forecast and energy consumption. The methodology for data
capture is outlined below:

*  Sensor Placement. Strategically place sensors to capture a representative sample of
environmental conditions within the greenhouse. This includes placing sensors at
various depths and locations throughout the greenhouse to monitor microclimates.

¢ Data Logging and Transmission. Utilize data loggers and wireless networks to en-
sure continuous data capture and transmission. This includes setting up a reliable
network infrastructure that can handle the data volume and frequency required for
RL applications.

*  Data Storage. Implement a centralized data storage solution, preferably cloud-based,
to store the large volumes of data generated by the sensors. Ensure the storage system
supports efficient data retrieval and processing.

*  Data Prepossessing, Cleaning, and Normalization. Address issues related to missing
values, sensor malfunctions, and noise in the data. Techniques such as interpolation
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and filtering should be applied to ensure data quality and consistency. Normalise
sensor data to a common scale to facilitate accurate analysis and model training. This
step is crucial for integrating diverse data types into a cohesive dataset.

Materials and Methods

Data capture was carried out on a hemp crop in a technical greenhouse (Figure 4) with
the following characteristics: glass greenhouse of 50 m? (5 x 10 m) each. All of them have
an automatic climate and irrigation control system with the following equipment:

¢  Humidifier with osmosis water mist.

* Air conditioners to heat and cool the modules. Twin, Triple Mitsubishi PUHZ-
P200YKA three-phase classic inverter Nominal cooling capacity (Min.-Max.) kW
19.00 Nominal heat capacity (Min.-Max.) kW 22.40.

*  Thermal shading screen.

e  Extractor fan and zenithal opening windows with anti-trip mesh.

e Artificial light lamps to increase net assimilation.

¢ Micro-sprinkler and drip or flood irrigation system.

¢  Temperature and humidity probes.

®  Electrical, compressed air, mains water and osmosed water connections.

* Embedded device (raspberrypi4) that deploys an intranet (WiFi, Bluetooth Low En-
ergy) for communication, monitoring, and control.

e  Electric energy meter in three-phase and single-phase circuits (shelly 3 EM). This
consumption meter communicates with the embedded system through the WiFi and
IP protocol.

e Communication to web servers to obtain the temperature prediction in the greenhouse area.

| Vent opener

— IoT data

-
Dashboard control \

| Thermal screen |
| Light lamps I
P2

Local weather station

Monitoring
- Control
Dataset

IoT data

| Energy measurement |

Figure 4. Industrial greenhouse used to deploy the IoT data. A control intranet has been deployed
with embedded devices and communications based on IoT protocols (WiFi and MQTT).

This work develops and tests a low-cost sensor/actuator network platform, based
on the Internet of Things, integrating machine-to-machine and human-machine interface
protocols used in [22]. The system integrated Internet of Things (IoT) paradigms, ubiqg-
uitous sensor networks, and edge computing to create a smart agricultural environment.
Implementation (Figure 4) included machine-to-machine and human-machine interface
protocols to enable seamless communication, data capture (Figure 5) and control processes
considering a precision agriculture scenario.
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Exterior Temperature (TE), Interior Temperature (T) and Global Radiation (RGE) - December 5

Global Radiatio

Hour

Exterior Relative Humidity (HRE), Interior Relative Humidity (HRI), Wind Speed (VV) and Wind Direction Levels (DV) - December 5

eri umidn
interior di
DV Wind Direction

FFFEFFEFT T TSI F TS
Figure 5. Example of daily data obtained in the dataset. The data are obtained daily every minute
and stored in a dataset to obtain temperature prediction models inside the greenhouse. The top graph
indicates exterior temperature, interior temperature and global radiation. The figure below indicates

exterior relative humidity, interior relative humidity, wind speed and wind direction.

3.5. Phase 4: Digital Model and RL Algorithm

RL involves an agent learning to make sequential decisions through interaction with
its environment to maximize cumulative rewards. In the context of greenhouse control, RL
offers a promising framework to optimize energy use while maintaining the configured
maximum and minimum temperature conditions. The theoretical model serves to support
decision making at a given moment. The objective is to start from prior knowledge that
allows the system to initiate decision making more effectively. From the initial configuration
of the RL algorithm, the system will adapt to the specific conditions of the installation,
optimizing control as feedback information is obtained on the evolution of the system
compared to its previous behavior. It is therefore about introducing a finer regulation
that is capable of improving the existing one by adapting to the specific conditions of
the installation.

3.5.1. Greenhouse Model Based in Differential Equations

There is knowledge and mathematical models of the behavior of temperature in a
greenhouse. These models provide a good starting point for defining reward policies and
functions. For all these reasons, the RL model is based on the knowledge already acquired
to, from there, introduce improvements and optimize current operation. The behavior of
the temperature inside a greenhouse is influenced by several factors, including the external
temperature, solar radiation, and the thermal dynamics of the greenhouse itself. Here, we
present a mathematical model to simulate the dynamics of the greenhouse temperature.

The thermal model of a greenhouse when both heating and cooling are applied can be
described by the following differential equation.

Cgreenhoused%t(t) = Qsolar(t) + Qheat(t) - Qcool(t) - UA(Tin(t) - Tout(t)) D
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To discretize this equation for algorithmic application, we consider a time step At. The
temperature change over the time step from ¢ to ¢ + At can be approximated as

dTin(t) _ Tin(t 4+ At) — Tin(t)
it~ At

)
Substituting this into the differential equation gives

Cgreenhousew = Qsolar(t) + Qheat(t) - Qcool(t) - UA(Tin<t) - Tout<t)) (3)

Solving for T, (t + At), we obtain the following

Tin(t + At) = Tin(t) + %[Qsolar(t) + Qheat(t) - Qcool(t) - UA(Tin(t) - Tout(t))] (4)

greenhouse

The meaning of all variables is shown in Table 4.

Table 4. Description of the variables involved in Equations (1)—(4).

Variable Meaning Units
Cgreenhouse Heat capacity of the greenhouse J/°C)
Tin(t) Inside temperature of the greenhouse at time ¢ °O)
Tin(t+ At) Inside temperature of the greenhouse at time ¢ + At °O)
Tout(t) Outside temperature at time ¢ (°C)
Qsolar () Solar radiation entering the greenhouse at time ¢ W)
QOheat () Heating power applied to the greenhouse at time ¢ (W)
Qeool () Cooling power applied to the greenhouse at time ¢ W)
u Overall heat transfer coefficient (W/m? °C)
A Surface area of the greenhouse (m?)
At Time step (s)

This discretized equation can be used to iteratively compute the inside temperature of
the greenhouse in discrete time steps for the purpose of applying control algorithms. This
model is simple, and the results give us a first analysis of trends and future strategies. In the
scenario of an RL algorithm, the actions taken depend on the value of the set temperature.
The actions that can be taken are shown in the Table 5.

Table 5. Actions example taken by RL algorithm using differential equations. Values can be modified
depending on the needs of the installation (cooling or heating). The number of actions can also

be modified.
Action 1 Tset—point = Tset—point +2
Action 2 Tset—point = Tset—point +1
Action 3 Tset—point = Tset—point
Action 4 Tset—point = Tset—point — 1
Action 5 Tset—point = Tset—point — 2

3.5.2. Greenhouse Model Based in Predictions

This model has two parts. In the first case, the behavior of the greenhouse temperature
in the next moments of time is predicted on the basis of IoT data and the machine learning
paradigm. Once the future value of the temperature inside the greenhouse is calculated,
the best possible action for regulation is taken.

The interior temperature of a greenhouse based on external climatic conditions and
historically can be obtained with several models, including linear regression, decision tree,
gradient boost, random forest, and neural networks, which can be compared to identify the
most accurate and consistent predictive model.

The dataset used consists of climatic data collected from a greenhouse over several
months. The variables include the following:
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¢  TE: Exterior Temperature;

¢  HRE: Exterior Relative Humidity;
¢  RGE: Exterior Global Radiation;

e VV:Wind Speed;

e  DYV: Wind Direction;

e LL: Rainfall;

¢  TI Interior Temperature;

¢ HRI: Interior Relative Humidity.

The data are resampled to intervals that are configured according to the installation,
and lag features are created to incorporate historical data into the prediction model.
The actions taken are shown in Table 6.

Table 6. Actions example taken by RL algorithm using temperature (Tj,) prediction. The control
values are limited by Ty;ax and Ty, Values can be modified depending on the needs of the installation
(cooling or heating). The number of actions can also be modified.

Action 1 Tset—point = Tin_predicted +2
Action 2 Tsetfpoint = Tin?predicted +1
Action 3 Tsetfpoinf = Tin_predicted

Action 4 Tset—point = Tin_predicted — 2
Action 5 Tset—point = Tin_predicted — 1

3.5.3. Reinforcement Learning Deployment

Reinforcement learning (RL) is a subfield of machine learning where an agent learns
to make decisions by interacting with an environment to maximize a cumulative reward.
In the context of controlling the temperature of a greenhouse, an RL agent can learn
when to turn the heater on or off to maintain the desired temperature and minimize
energy consumption.

The RL model consists of the following elements:

e  State (s): Represents the current situation of the environment. In our case, the state
can include the internal temperature of the greenhouse, the external temperature, and
solar radiation.

* Action (a): The decision taken by the agent in each state. In our case, actions are
turning the heater on (¢ = 1) or off (a = 0).

*  Reward (r): The feedback received by the agent after taking an action in a state. The
reward can be a function of the internal temperature and energy consumption.

¢ Policy (71): The strategy followed by the agent to make decisions. The policy maps
states to actions.

e Value (V(s)): The expected value of the cumulative reward starting from state s
following policy 7.

*  Q-Value (Q(s, a)): The expected value of the cumulative reward starting from state s
taking action a and following policy 7.

The goal of the RL agent is to learn an optimal policy 7r* that maximizes the cumu-
lative reward. This is formalized in the optimal control problem in a Markov Decision
Process (MDP).

RL Model Formulas

State Value Function:

V() =E

Y ot | so = s] ©)
t=0

where ¢ € [0,1) is the discount factor that weights the importance of future rewards.
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Action Value Function (Q-Value):
Q"(s,a) =E|Y_2'ri | so=s,a0 = a] (6)
t=0
Q-Value Update (Q-Learning):
Q(st,ar) + Qst, 1) +a {Tt+1 +ymaxQ(s1,4) — Q(St/ﬂt)} @)

where « is the learning rate.
The meaning of all variables is shown in the Table 7.

Table 7. Description of the variables involved in Equations (5)—(7).

Variable Meaning
State (s) Represents the current situation of the environment. In our case, the state can include the internal temperature of the
greenhouse, the external temperature, and solar radiation
Action (a) The decision taken by the agent in each state. In our case, actions are turning the heater on (a2 = 1) or off (2 = 0)
Reward () The feedback received by the agent after taking an action in a state. The reward can be a function of the internal temperature
and energy consumption
Policy (77) The strategy followed by the agent to make decisions. The policy maps states to actions

Value (V(s))
Q-Value (Q(s, a))

The expected value of the cumulative reward starting from state s following policy 7t
The expected value of the cumulative reward starting from state s taking action a and following policy 7t

3.6. Phase 5: Training and Methods

To start with prior knowledge and avoid the initial errors introduced by RL, actions,
functions, and reward policies are analyzed first through simulation and then using real
data obtained in the cultivation process. Firstly, an analysis is carried out using differential
equations that model the climatic behavior in a greenhouse and then apply it with the data
obtained in the greenhouse.

The method used for the RL algorithm applied to a greenhouse model is based on
differential equations.

The RL agent intervenes in the control process through the following steps:

1.  Observe Current State: The agent observes the current state s;, which includes the
internal temperature (T}, ), the external temperature (Tpy¢), and solar radiation (Qse14y)-

2. Select Action: Based on its policy 7, the agent chooses an action 4; (turn the heater
on or off).

3. Apply Action: The chosen action is applied to the environment.

4.  Observe Reward and Next State: The agent receives a reward r; and observes the
next state s; 1.

5. Update Policy: The agent updates its policy using the learning algorithm, such as Q-learning.

By formulating temperature control as a sequential decision-making problem, RL
algorithms can adaptively adjust based on real-time environmental data and set-point con-
ditions. One crucial aspect in applying RL to temperature control is the choice of state repre-
sentation, which captures relevant information about the environment for decision making.

The process is based on the technician’s previous configuration and a theoretical
model of temperature behavior on which the RL algorithm performs the calculations. This
model can be based on energy balances or be a model obtained by studying the behavior of
greenhouse conditions.

Selecting an appropriate state representation is essential to allow the RL agent to
effectively learn and adapt its cotrol policies to achieve optimal performance under varying
environmental conditions. Furthermore, the careful selection of control actions is equally
important, as it determines how the RL agent interacts with the environment. By choosing
suitable control actions, such as adjusting the temperature set-point, the RL agent can
effectively optimize energy usage. Finally, algorithms are developed to optimize the
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reward functions associated with states and actions, ensuring that the RL agent learns
to make decisions that lead to the most favorable outcomes. This approach allows the
development of intelligent control systems capable of dynamically responding to changing
environmental conditions and ambient conditions needs.

The Q-learning algorithm has five actions (Table 5).
Table 8 describes examples of potential reward functions applicable in RL algorithms.

Table 8. Different reward functions used.

Strategy Reward Function Proposal
Reward function penalizes the agent for using the heating system R1 = —1 %f Cheating > 0
0 if Qheating =0

Reward function penalizes the use of the heating system taking into account the
efficiency and the actual deviation from the desired temperature range

R2= —(a-E+B-Dl+-L1)

Refined reward function: energy consumption penalty. Temperature stability. Exceeding
maximum and minimum temperatures. Penalty for frequent changes in the set-point

R3=—(a-E+B-D2+y-L2+46-9)

An appropriate RL algorithm, such as Q-learning, deep Q network (DQN), or posterior

policy optimization (PPO), should be chosen based on the complexity of the task and the
available computational resources, where the following apply:

«, B, and 7y are weight coefficients that can be tuned.
E is the energy consumption penalty.
Tin is the current inside temperature.
Tset-point 1S the set-point temperature.

D1, D2 is the penalty for temperature deviation.
Dl = |Tin - Tset—point|
D2 = ‘Tin - Tset—point| + (Tin - Tse’t-point)2

L1, L2 are the limit penalty for exceeding the maximum or minimum temperature.
The limit penalty is applied when the inside temperature exceeds the maximum or
minimum temperature limits:

|Tin - Tmax| if Tin > Tmax
L1 = |Tin - Tmin| if Tin < Tmin
0 if Tmin < Tin < Tmax

(Tin - Tmax)2 if Tin > Tmax
L2 = (Tmin =T )2 if Tin < Tin

0 otherwise

where Tnax and Trin are the maximum and minimum allowable temperatures, respectively.

S is the set-point change penalty.

The set-point change penalty discourages frequent and large adjustments to the set-
point temperature:

S= |Tset—point - Tprevious_set—point|

where Tprevious_set-point 18 the set-point temperature from the previous time step.

4. Results and Discussion
4.1. Results of the Reward Functions for Greenhouse Control

The reward function aims to balance the trade-offs between energy efficiency, tem-

perature stability, and smooth set-point adjustments. By carefully tuning the weights «,
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B, v, and 4, the reinforcement learning agent can learn an optimal strategy to control the
greenhouse temperature. Three reward functions are indicated in Table 8. In this section, we
analyze the result obtained by applying each of them to the temperature evolution model
in a greenhouse (Figure 6). From the result obtained, the first conclusions will be drawn
to obtain the best initial configuration of the RL algorithm that will act in the installation
under real conditions. In this work, we compare the three strategies in Table 5. We also
compare the control with RL and the results obtained with a classic control without RL.
This analysis and comparison will result in the theoretical improvement of the algorithm
compared to the current control and the best-reward policy. Once the theoretical analysis
of the best reward function applicable to the theoretical model and greenhouse conditions
has been carried out, the algorithm is implemented in the facility using real data and
actions defined in the previous step. The comparison of energy consumption between
the reinforcement learning (RL)-based control and a fixed set-point control at different
sampling times showed varied results. The following analysis examines the percentage
difference in energy consumption between systems controlled by reinforcement learning
(RL) and those with a fixed set-point. The cooling and heating processes of the greenhouse
have been analyzed. Each of the analyses provides a figure with six images with different
comparisons. The six subplots in each provided figure are evaluated to determine which
system is more energy efficient and effective in maintaining the desired temperature range.

Control Loop
o Tout
Tsetpoint £ E,
on/off
L Q:

ACtionf(Tset;aint)

-

E

RL Agent dTJ - Qsotar + Qneat = U * A - (Tin — Tour)

dt Cg‘reenhouse
RL (Q-Learning) 'g.g
Reward function

RL feedback

RL Control analysis

Figure 6. Comparative analysis between RL control, Table 5 reward functions and RL control.

4.1.1. (1a) Cooling Temperature Control Analysis Using the Differential Equation
Model (Figure 7)

In R1a-R1b, the RL system manages to maintain the inside temperature within the
desired range more effectively than the fixed set-point system. Temperature variations
with RL control are less pronounced and stay closer to the set-point compared to the fixed
set-point system. In R2a-R2b, similar to R1a-R1b, the RL control maintains a more stable
temperature with fewer and smaller deviations from the set-point. The fixed set-point
system shows greater fluctuations and occasionally falls outside the desired temperature
range. In R3a-R3b, the graph reinforces the previous observations, where the RL system
exhibits better control over the temperature, keeping it within the desired limits more
consistently than the fixed set-point system. The fixed set-point control shows larger
temperature changes and less precision in maintaining the set-point. R1a and R3a appear
to perform the best with higher and more consistent energy savings at different sampling
times. The top left subplot shows a slight edge in overall savings stability.
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R1b R2b R3b

Figure 7. Comparative analysis in greenhouse cooling process: R1a: percentage difference in energy
consumption (RL-reward function 1 vs. fixed set-point), R2a: percentage difference in energy
consumption (RL-reward function 2 vs. fixed set-point), R3a: percentage difference in energy
consumption (RL-reward function 3 vs. fixed set-point), R1b: inside temperature (RL-reward function
1 vs. fixed set-point), R2b: inside temperature (RL-reward function 2 vs. fixed set-point), R3b: inside
temperature (RL-reward function 3 vs. fixed set-point).

General Improvement with RL Control

Across all energy consumption graphs, the RL system consistently outperforms the
fixed set-point system in terms of energy savings. The improvement is particularly notable
for shorter sampling times (5 to 20 min), where the savings are more substantial. Even at
longer sampling intervals (up to 60 min), the RL system maintains a significant percentage
of energy savings.

Temperature Control Effectiveness

The lower subplots demonstrate that the RL control system maintains the desired
temperature range more effectively than the fixed set-point system. The RL system results
in smaller deviations from the set-point, indicating better control and stability. The fixed
set-point system shows larger temperature fluctuations and occasionally fails to keep the
temperature within the desired range.

4.1.2. Discussion in Cooling Process

The analysis indicates that the RL control system is highly effective in reducing energy
consumption compared to the fixed set-point system. Shorter sampling times yield the best
results with the RL system showing a 45% improvement in energy efficiency. Furthermore,
the RL system demonstrates superior temperature control, maintaining the desired range
more consistently and with fewer deviations. In general, the RL system is a preferable
choice for optimizing energy use and temperature stability in greenhouse temperature
control scenarios.

The R1a-R1b subgraph shows a consistent improvement in energy consumption with
the RL system as the sampling time increases. For sampling times between 5 and 10 min,
the RL system shows significant energy savings of around —45%. As the sampling time
increases, the savings decrease slightly but remain significant, ending around —35% at
60 min. R2a-R2b exhibits a similar trend with the RL system performing better than
the fixed set-point system. The initial savings are around —40% with fluctuations as the
sampling time increases. The savings dip slightly around 30 to 40 min but show an overall
improvement, ending around —20% for 60 min. In R3a-R3b, the trend is also consistent
with the other graphs, showing that the RL system consistently saves energy compared
to the fixed set-point system. The savings are initially around —45% for shorter sampling
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times. Despite fluctuations, the savings remain significant throughout, ending around
—35% for 60 min.

4.1.3. (1b) Heating Temperature Control Analysis Using the Differential Equation
Model (Figure 8)

General Improvement with RL Control

Across all energy consumption graphs, the RL system consistently outperforms the
fixed set-point system in terms of energy savings. The improvement is particularly notable
for shorter sampling times (5 to 20 min), where the savings are more substantial. Even at
longer sampling intervals (up to 60 min), the RL system maintains a significant percentage
of energy savings.

Percentage Difference in Energy Consumption (RL vs Fixed Setpoint) Percentage Difference in Energy Consumption (RL vs Fixed Setpoint) Percentage Difference in Energy Consumption (RL vs Fixed Setpoint)

R1b R2b R3b

Figure 8. Comparative analysis in greenhouse heating process. Rla: percentage difference in
energy consumption (RL-reward function 1 vs. fixed set-point), R2a: percentage difference in
energy consumption (RL-reward function 2 vs. fixed set-point), R3a: percentage difference in energy
consumption (RL-reward function 3 vs. fixed set-point), R1b: inside temperature (RL-reward function
1 vs. fixed set-point), R2b: inside temperature (RL-reward function 2 vs. fixed set-point), R3b: inside
temperature (RL-reward function 3 vs. fixed set-point).

Temperature Control Effectiveness

The bottom subplots demonstrate that the RL control system maintains the desired
temperature range more effectively than the fixed set-point system. The RL system results
in smaller deviations from the set-point, indicating better control and stability. The fixed
set-point system shows larger temperature fluctuations and occasionally fails to keep the
temperature within the desired range.

4.1.4. Discussion in Heating Process

The analysis indicates that the RL control system is highly effective in reducing energy
consumption compared to the fixed set-point system. Shorter sampling times yield the best
results with the RL system showing a 45% improvement in energy efficiency. Furthermore,
the RL system demonstrates superior temperature control, maintaining the desired range
more consistently and with fewer deviations. In general, the RL system is a preferable
choice for optimizing energy use and temperature stability in greenhouse temperature
control scenarios.

4.2. Results for Greenhouse Control Based in Temperature Prediction and Reinforcement Learning

The first goal is to design and implement a model that predicts indoor temperature
(TT) based on various environmental variables. The model takes advantage of past data
and predicted future values to make accurate forecasts. Once there is an estimated value of
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the temperature evolution inside the greenhouse, the RL algorithm is applied acting on
the set-point, depending on said evolution. From the previous study using the differential
equations model, it was concluded that the reward function R1 is viable to display the
algorithm. For all these reasons, in this analysis with data obtained in the greenhouse, we
are going to use this reward function.

4.2.1. Prediction Model
The model predicts the indoor temperature (TI) using the following variables:

e  External Temperature (TE);

¢  External Relative Humidity (HRE);
e Wind Direction (DV);

e Wind Speed (VV);

e  External Global Radiation (RGE);

* Internal Relative Humidity (HRI).

The prediction is based on the past values (lags) of these variables for the previous
60 min and the predicted external temperatures for the next 60 min.

We created lagged characteristics for the last 60 min and leading characteristics for the
future external temperature (TE). This allows the model to capture temporal dependencies.
The dataset is divided into training and testing sets. The features are standardized to have
a mean of 0 and a standard deviation of 1. We use a linear regression model to predict the
indoor temperature.

For predicting the interior temperature of the greenhouse, random forest and linear
regression models are the most reliable based on their lower RMSE and MAE values.
The neural network model’s high error rates suggest that it may not be suitable for this
particular prediction task without further tuning or perhaps a different architecture or
feature set. Linear regression is chosen for its simplicity and interpretability. The model’s
performance is evaluated using the root mean squared error (RMSE) and mean absolute
error (MAE) on both the training and testing datasets.

4.2.2. Convergence of the Reinforcement Learning (RL) Method

Figure 7 (cooling process) and Figure 8 (heating process) illustrate that the RL-based
control consistently outperforms fixed set-point control in maintaining the desired temper-
ature range while optimizing energy consumption The graphs demonstrate that the RL
system stabilizes over time, as shown by the reduced temperature and energy consump-
tion fluctuations after initial adjustments. This stabilization indicates the RL algorithm’s
convergence in heating and cooling scenarios. Although the figures do not explicitly plot
cumulative rewards over training episodes, the consistent performance improvements and
stability of energy savings across different sampling times indirectly confirm that the RL
agent has learned an optimal policy, satisfying convergence criteria.

Figure 9 compares the performance of different machine learning models based on
two metrics: root mean squared error (RMSE) and mean absolute error (MAE). Data were
captured from November 2023 to May 2024.

4.2.3. (2a) Cooling Control Analysis Using the Temperature Prediction Model (Figure 10)

The RL agent was trained to control the greenhouse temperature. The performance of
the RL-based control was compared to that of a fixed set-point control. The total energy
consumption and the inside temperature regulation were evaluated.

The actions selected depend on the predicted temperature. In this way, it does not
depend on a value set in the set-point but rather on variable values that depend on the
behavior of the greenhouse.
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Figure 9. Machine learning methods to predict the temperature inside the greenhouse (TI). The
figure above is the RMSE comparison. The figure below is the MAE comparison.

Comparative Energy Consumption: RL vs Fixed Setpoint
Total energy savings: 35.44% Inside Temperature: RL vs Fixed Setpoint vs Predicted

~e— RL Energy Consumption SO 30 4-— Inside Temperature (RL)
50 { — Fixed Setpoint Energy Consumption 2 iperature (Fixed Setpoint)
Inside Temperature

Cumulative Energy Consumed (kWh)
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Figure 10. Cooling process: energy consumption: RL vs. fixed set-point (left) and inside temperature:
RL vs. fixed set-point vs. predicted (right). The graph on the left shows comparative energy
consumption: RL vs. fixed set-point. The graph on the right shows the inside temperature: RL vs.
fixed set-point vs. predicted.

Figure 10 shows the regulation of inside temperature using RL control, fixed set-point
control, and predicted inside temperature. The temperature in the RL system is approaching
the established maximum more than the temperature set by the set-point. This dynamic
adjustment helps minimize energy consumption while ensuring that the temperature stays
within the desired range. The predicted temperature provides a reference for the RL control
actions. The cumulative energy consumption graph (the graph on the right) demonstrates
that the RL-based control performs better than the fixed set-point control, achieving a
total energy savings of 35.44%. This significant reduction in energy usage highlights the
efficiency of the RL algorithm in optimizing the control strategy. The graph on the right
reveals that the RL control effectively maintains the temperature within the desired range
(between T_min and T_max). The RL control shows a more dynamic response compared
to the fixed set-point control, which can lead to more efficient heating. The predicted
temperature aligns well with the actual inside temperature regulated by the RL control,
indicating accurate predictions and effective control actions. The RL-based temperature
control (in the cooling phase) method shows significant advantages over fixed set-point
control in terms of energy savings and effective temperature regulation. The ability of RL to



Sensors 2024, 24, 8109

20 of 24

adaptively adjust the set-point temperature based on predicted inside temperatures leads to
optimized energy consumption and better maintenance of the desired temperature range.

4.2.4. (2b) Heating Control Using the Temperature Prediction Model (Figure 11)

Figure 11 compares the cumulative energy consumption between the RL-based control
and the fixed set-point control. The RL control demonstrates significant energy savings
with a total reduction of 25.93% compared to the fixed set-point control. This indicates
the effectiveness of the RL algorithm in optimizing energy usage while maintaining the
desired temperature.

Comparative Energy Consumption: RL vs Fixed Setpoint
Total energy savings: 25.93% Inside Temperature: RL vs Fixed Setpoint vs Predicted

~e— RL Energy Consumption
Fixed Setpoint Energy Consumption

Cumulative Energy Consumed (kh)

0 20 40 60 80 100 120 140 o 20 0 60 80 100 120 130
Time (intervals) Time (intervals)

Figure 11. Heating process: comparative energy consumption: RL vs. fixed set-point and inside
temperature: RL vs. fixed set-point vs. predicted. The graph on the (left) shows comparative energy
consumption: RL vs. fixed set-point. The graph on the (rigth) shows inside temperature: RL vs. fixed
set-point vs. predicted.

The second figure in the composite image shows the regulation of the inside tempera-
ture using RL control, fixed set-point control, and the predicted inside temperature. The RL
control maintains the temperature closer to the upper limit (Tiax) compared to the fixed
set-point control. This dynamic adjustment helps minimize energy consumption while
ensuring that the temperature stays within the desired range. The predicted temperature
provides a reference for the RL control actions.

The cumulative energy consumption graph demonstrates that the RL-based control
performs better than the fixed set-point control, achieving a total energy savings of 25.93%.
This significant reduction in energy usage highlights the efficiency of the RL algorithm in
optimizing the control strategy.

The inside temperature regulation graph reveals that the RL control effectively main-
tains the temperature within the desired range (between Tiin and Tnax). The RL control
shows a more dynamic response compared to the fixed set-point control, which can lead
to more efficient heating. The predicted temperature aligns well with the actual inside
temperature regulated by the RL control, indicating accurate predictions and effective
control actions.

The RL-based temperature control method shows significant advantages over the
fixed set-point control in terms of energy savings and effective temperature regulation.
The ability of RL to adaptively adjust the set-point temperature based on predicted inside
temperatures leads to optimized energy consumption and better maintenance of the desired
temperature range. The actions taken are shown in Table 9

Table 9. Actions taken by RL algorithm in heating case using temperature (TI) prediction. The control
values are limited by Tyay and Ty,

Action 1 Toer— point = Tin_predicted

Action 2 Tset—point = Tin_predicted -1
Action 3 Tset—point = Tin_predicted — 2
Action 4 Tset—point = Tin_predicted —3

Action 5 Tset—point = Tin_predz’cted —4
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This Q-learning algorithm optimizes (in the heating phase) the greenhouse set-point
temperature by selecting from five actions to adjust the set-point. The reward function
penalizes heating usage, encouraging the algorithm to find a set-point that minimizes
energy consumption while maintaining the desired temperature range.

4.2.5. Discussion of Energy Consumption and Savings for Different Tse;— point

If the set-point is modified, there may be a specific moment in which the savings
could be similar (Figure 12, on the left). However, regulation with a fixed set-point has
two difficulties:

e If there is a change in the external climate conditions, the temperature is not regulated
correctly. The fixed set-point system must be modified in real time.

¢ The regulation with a fixed set-point depends on the knowledge of the technician and
does not consider external environmental values.

c Energy C for Different T_setpoints

) Energy Savings for Different T_setpoints
etpoint=18.0°C)

int=19.0C)
int=20.0°C)
int=21.0C) 46

ixed Setpoint Energy Consumption (T_setpoint=22.0°C)

Cumulative Energy Consumed (kWh)
Energy Savings (%)
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200
‘Time (intervals) T_setpoint (*C)

Figure 12. Comparative analysis taking different reference temperatures (set-points). The graph on
the (left) shows comparative energy consumption for different T_setpoints. The graph on the (right)
shows energy savings for different T_setpoints.

RL regulation creates a model in which the system is automatically regulated also
considering external conditions and installation capacity.

The graph on the left of Figure 12 illustrates the cumulative energy consumption
over time for different set-point temperatures (Tset— point). The graph compares the energy
consumption between reinforcement learning (RL)-based control and a fixed set-point
control for various set-points.

Key Observations
¢  Energy Consumption Patterns:

- The energy consumption increases over time for both RL and fixed set-point
controls.

- For lower Tt point values, the energy consumption is generally lower. As
Tset—point increases, energy consumption increases.

e  Comparison between RL and Fixed Set-Point:

- RL control consistently consumes less energy compared to fixed set-point control
for all set-points.

- The difference in energy consumption between the RL and the fixed set-point
control is more pronounced at higher set-points.

Right Graph: Energy Savings for Different Tt pojns

The graph on the right of Figure 12 shows the percentage of energy savings achieved
by using the RL control compared to the fixed set-point control in different Tt ;s values.

Key Observations
¢  Energy Savings Trend:
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- The energy savings increase with higher Ty point values.

- The energy savings range from approximately 36% at Tse;—point = 18.0 °C to nearly
50% at Tset— point = 22.0 °C.

e  Efficiency of RL Control:

- The RL control becomes more efficient in terms of energy savings as the Tget— point
increases.

- This indicates that RL control is particularly beneficial in scenarios where higher
set-points are required, resulting in significant energy savings.

The analysis of the graphs reveals that the RL-based control offers substantial energy
savings compared to the fixed set-point control across various set-points. The energy savings are
more pronounced at higher set-points, indicating the effectiveness of RL control in optimizing
energy consumption while maintaining desired temperature conditions in the greenhouse. This
makes RL control a promising approach for energy-efficient temperature regulation.

5. Conclusions

The results obtained in this work align with the findings of previous studies [1] which
also highlight the potential of RL to improve energy efficiency in complex systems such
as greenhouses. This work provides an expanded method to apply the integration of RL
with IoT considering the participation and knowledge of users (technicians and farmers),
the use of non-proprietary hardware and communication protocols. The model can also be
implemented both in operating facilities and in new designs.

The integration of Internet of Things (IoT) protocols and reinforcement learning (RL)
methodologies has been shown to be effective in managing and optimizing greenhouse
operations for industrial hemp cultivation. This combination not only enhances operational
efficiency but also maintains selected temperatures and optimizes energy consumption
more effectively than classical control methods. By reducing the need for constant human
intervention, this technological integration minimizes labor costs and increases scalability
for larger agricultural enterprises.

The RL-based control system shows significant energy savings while maintaining
the desired temperature ranges, outperforming traditional fixed set-point control systems.
Specifically, the study shows energy savings of up to 45% during cooling processes and
25.93% during heating processes. In addition, this new control approach simplifies the
workload of technicians by eliminating the need for complex analyses to achieve the same
results, allowing them to focus on higher-level oversight and maintenance tasks.

Integration with IoT plays a crucial role in this setup, enabling real-time data acquisi-
tion and seamless communication between various greenhouse subsystems. IoT devices
collect and transmit environmental data that RL algorithms use to make informed dynamic
adjustments to greenhouse conditions. This IoT integration ensures that the RL model can
adapt to changing conditions promptly and accurately, thus optimizing resource use and
improving overall system responsiveness.

RL algorithms are capable of adaptively adjusting set-point temperatures based on real-
time data and predictions, leading to optimized energy consumption and better maintenance
of desired environmental conditions. The study validates the practical implementation of
RL models in automated greenhouses in the real world, showcasing their ability to scale and
adapt to different types of crops and environmental conditions. These conclusions highlight
the potential of combining IoT and RL technologies to improve the efficiency, scalability, and
sustainability of greenhouse operations, particularly for industrial hemp cultivation.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things

RL reinforcement learning

HMI human-machine interface
MMI machine-to-machine interface
LSTM Long Short-Term Memory
HVAC Heating, Ventilation, and Air Conditioning
TE Exterior Temperature

HRE Exterior Relative Humidity
RGE Exterior Global Radiation

\A% Wind Speed

DV Wind Direction

TI Interior Temperature

HRI Interior Relative Humidity
RMSE root mean squared error

MAE mean absolute error
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