Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/35086
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Moragues, Raul | - |
dc.contributor.author | Aparicio, Juan | - |
dc.contributor.author | Esteve, Miriam | - |
dc.contributor.other | Departamentos de la UMH::Estadística, Matemáticas e Informática | es_ES |
dc.date.accessioned | 2025-01-21T11:44:39Z | - |
dc.date.available | 2025-01-21T11:44:39Z | - |
dc.date.created | 2023 | - |
dc.identifier.citation | Operations Research Perspectives | es_ES |
dc.identifier.issn | 2214-7160 | - |
dc.identifier.uri | https://hdl.handle.net/11000/35086 | - |
dc.description.abstract | A B S T R A C T In this paper, we introduce an unsupervised machine learning method for production frontier estimation. This new approach satisfies fundamental properties of microeconomics, such as convexity and free disposability (shape constraints). The new method generalizes Data Envelopment Analysis (DEA) through the adaptation of One-Class Support Vector Machines with piecewise linear transformation mapping. The new technique aims to reduce the overfitting problem occurring in DEA. How to measure technical inefficiency through the directional distance function is also introduced. Finally, we evaluate the performance of the new technique via a computational experience, showing that the mean squared error in the estimation of the frontier is up to 83% better than the standard DEA in certain scenarios. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 14 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartofseries | 11 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Data Envelopment Analysis | es_ES |
dc.subject | Unsupervised machine learning | es_ES |
dc.subject | Support Vector Machines | es_ES |
dc.subject | Frontier analysis | es_ES |
dc.subject | Technical efficiency | es_ES |
dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas | es_ES |
dc.title | An unsupervised learning-based generalization of Data Envelopment Analysis | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.orp.2023.100284 | es_ES |
Ver/Abrir:
1-s2.0-S2214716023000192-main.pdf
892,67 kB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.