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A B S T R A C T

In this paper, we introduce an unsupervised machine learning method for production frontier estimation. This
new approach satisfies fundamental properties of microeconomics, such as convexity and free disposability
(shape constraints). The new method generalizes Data Envelopment Analysis (DEA) through the adaptation
of One-Class Support Vector Machines with piecewise linear transformation mapping. The new technique
aims to reduce the overfitting problem occurring in DEA. How to measure technical inefficiency through the
directional distance function is also introduced. Finally, we evaluate the performance of the new technique
via a computational experience, showing that the mean squared error in the estimation of the frontier is up
to 83% better than the standard DEA in certain scenarios.
1. Introduction

The measurement of efficiency of companies and public institu-
tions has been and is a topic of interest for economists, production
engineers and in various other areas of knowledge in the scientific
literature [1–3]. Given a production function, which represents the
maximum producible output from a given mix of inputs, it is possible
to determine the technical efficiency of a company or institution as
the distance between the vector of inputs and outputs, which mathe-
matically represents the unit to evaluate, and the production function.
Production functions must satisfy a series of properties which are
clearly identified in the microeconomic literature of production theory
[4]. These properties characterize the shape of the production function.
For example, concavity is one of the usually assumed properties in
the literature. Concavity of the production function assures that the
nonnegative region of points below the production function in the space
of inputs and outputs; that is, the so-called technology, is a convex
set. Another traditional property is monotonicity of the production
function; which indicates that the produced amount of outputs can
never decrease when the amount of resources used in the production
process increases. Since direct observation of a production function or
technology is not feasible in practice, the above features of production
functions have been considered as shape constraints in the literature
when the estimation of the production functions from the observation
of a sample of units is the aim. For example, in the deterministic case
(without random noise), the definition of a production function as the
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maximum producible output forces the observed units to be always
located below the estimated function in the space of inputs and outputs.

As can be expected when a problem attracts the attention of a
considerable number of researchers, there have been many and very
different techniques introduced in the literature with the purpose of
estimating a production function from the observation of a data sample.
It is usual in practice to subdivide these techniques into two large
categories: parametric and nonparametric methodologies. Parametric
techniques were the first to be introduced in the scientific literature,
see for example the case of the Cobb–Douglas production function [5].
Under this approach, the production function is identified mathemat-
ically through an expression dependent on a set of coefficients to be
estimated throughout some method associated with the minimization
of an error function or maximization of a likelihood function. The
application of statistical inference tools on the coefficients of interest
and the measurement of technical efficiency of the units to be assessed
is usually one of the key goals in this type of methodologies. The
inferential procedures used require, in this case, the assumption of some
distribution of the error term and the technical inefficiency term [6].
It is also often an approach where the treatment of multiple outputs
is neither natural nor easy. In contrast, we have the nonparametric
methodologies. These do not need an a priori identification of the
mathematical expression of the production function to estimate nor
do they require the assumption of any type of associated probability
distribution function related to the data generation process. Among
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these nonparametric techniques, Data Envelopment Analysis (DEA) [7,
8] stands out as one of the most used tools in both applications as in
methodological contributions in the last decades [9].

In particular, DEA relies on the construction of a technology in the
space of inputs and outputs that satisfies certain classical properties of
production theory (e.g., free disposability and convexity). It is a data
driven approach with a lot of advantages from a benchmarking point
of view and in which the treatment of the multi-output framework is
relatively easy. However, Data Envelopment Analysis has been criti-
cized for its deterministic and non-statistical nature, even being labeled
as a pure descriptive tool of the data sample at a frontier level with
little inferential power (its inferential power is exclusively based on the
property of consistency and the increase of the sample size instead of
on the fundamentals of the method) [10]. In fact, DEA suffers from an
overfitting problem as a consequence of the application of the minimal
extrapolation principle, which places the estimator of the production
function as close to the dataset of observed points as possible [11]. In
line with this, various authors have attempted to correct these deficien-
cies within the nonparametric approach, introducing complementary
and alternative methodologies to DEA. For example, Simar and Wilson
adapted the methodology known as bootstrapping to the determination
of confidence intervals for the efficiency score obtained via DEA in
[12,13].

Additionally, we can find in the literature a few recent contribu-
tions that try to relate in some way the field of machine learning to
the efficiency measurement. In this regard, Kuosmanen and Johnson
paid attention to piecewise linear estimators and introduced the Cor-
rected Concave Nonparametric Least Squares (CCNLS) method [14].
Parmeter and Racine introduced nonparametric kernel frontier esti-
mators [15]. Daouia et al. resorted to quadratic and cubic splines
with shape constraints to estimate suitable production functions [16].
Esteve et al. tailored the Classification and Regression Trees (CART)
method to determine production frontiers [10]. Tsionas introduced
smooth monotone concave probabilistic regression trees for the esti-
mation of efficiency and showed how to deal with panel data [17].
Valero-Carreras et al. adapted Support Vector Machines to determine
technical efficiency [11,18]. Guillen et al. tailored Boosting to estimate
production functions [19]. Guerrero et al. adapted the Structural Risk
Minimization principle to determine production frontiers [20]. Finally,
Olesen and Ruggiero proposed the use of hinging hyperplanes as a
flexible nonparametric representation of a production function [21,22].

These are some of the attempts made in the last few decades to
relate a nonparametric technique of a descriptive nature such as DEA
with more advanced and machine learning methods assuming shape
constraints. However, there is still a scarcity of contributions relating
machine learning techniques and methods of estimation of production
functions and technical efficiency, despite the nonparametric, data-
driven nature of these techniques, and the tendency of many scientific
areas towards the use of this type of tools for data analysis [23,24].

Every technique mentioned above, except those based on DEA (such
as standard DEA itself or bootstrapped DEA), are regression methods
which require the prior identification of a response variable and of
one or more predictor variables. In a production context, the response
variable is identified in every case with the production output, whereas
the predictor variables are those that refer to the inputs used in the
production process. As is usual with statistical regression methods, the
extension of those models to the multi-response case is not easy and, in
fact, given a certain technique, there are generally various alternatives
found in the literature that are accepted as possible extensions for the
treatment of multiple response variables [25]. In production theory,
one possibility is to aggregate all outputs into a single economic type
measure, such as the company revenue, if information about market
prices of the various outputs are available. In that case, the economic
type variable would be the response variable of the problem. Another
possibility, within the parametric context, is to define a transformation
2

function or a distance function from an expression which depends on
every input and output simultaneously [26]. In machine learning, the a
priori identification of one or various response variables is a necessary
common practice within the subarea of supervised analysis.

Under supervised learning, the data are pairs of the response vari-
able and the predictors, and the aim is to determine the functional
relationship that relates the response variable to the predictors. A
learning problem with a binary response variable is referred to as a
classification problem, whereas for a real-valued response variable, the
problem becomes known as a regression problem. In contrast, under un-
supervised learning, there are no response variables and the objective
is to gain some understanding of the Data Generating Process (DGP)
that yielded the data (density estimation, clustering, etc.). According
to this classification, DEA, as a data driven technique, resembles more
an unsupervised methodology than a supervised approach, unlike most
alternative techniques that exist in the literature. From this point of
view, it could be more natural to grant DEA some inferential power
through its assimilation via some unsupervised technique within the
machine learning area. This corresponds to a methodological devel-
opment which, as far as we are aware, is yet to be treated in the
literature.

In recent production theory literature, Daraio and Simar describe
the DGP which lies behind every productive process in [27]. It is
assumed that we observe a (learning) sample of an identically and in-
dependently distributed random input–output vector with an unknown
joint distribution with a certain support. In the production framework,
the technology, i.e., everything that is feasible to be observed, coin-
cides with the support of the DGP. And we are going to exploit this
relationship in this paper.

As several authors have recently pointed out, unsupervised learning
within the machine learning field includes the estimation of the support
of a distribution [28]. It is often easier and more manageable to
determine the support of the underlying probability density, that is,
a function where (almost) all of the data lives in the region where
this function takes nonzero values, than directly identifying the density
function [28]. A related point of view is to see unsupervised learning
as a classification problem where only examples from one of the two
considered classes are available [29,30]. This point of view gave rise
to the OneClassSVM algorithm [28], which we in particular adapt
in this paper to address the problem of the estimation of production
technologies through the identification of the support of the underlying
DGP.

In particular, in this paper, we define the so-called unsupervised
Data Envelopment Analysis (uDEA) model, which is a OneClassSVM-
inspired model adapted to the setting of production frontier estimation
through a piecewise linear transformation mapping. We prove that
certain properties of the mapping are sufficient to guarantee convexity
and free disposability of the estimated technology, and characterize its
weak and strong frontiers. Then, we describe a DEA-based methodology
to obtain the hyperplanes involved in the feature mapping. We then
determine the dual of the quadratic optimization program associated
with the uDEA approach. Additionally, we identify the hyperparameter
that controls the proportion of support vectors and permitted out-
liers. Moreover, we adapt the directional distance function measure of
technical inefficiency to our context, also focusing on Farrell’s output-
oriented measure. We then present some computational experiments
where we compare uDEA with DEA.

The rest of the paper is organized as follows. Section 2 sets up some
notation and briefly introduces the DEA approach and the
OneClassSVM algorithm. In Section 3, we extend the OneClassSVM
algorithm to the problem of estimating production frontiers, and de-
scribe each step of the new unsupervised DEA technique (uDEA), and
prove that it satisfies some desired properties. We investigate the
performance of uDEA in Section 4. Finally, we conclude and discuss

possible extensions of the work in Section 5.
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2. Background

In this section, we introduce the notation that we use throughout
the paper, the main notions related to Data Envelopment Analysis, the
One-Class Support Vector Machine algorithm, and the piecewise linear
feature mapping that we will use.

2.1. Notation

Throughout this paper, we use the following notation. We denote
variable names in lowercase boldface letters when they are vectors,
and in Roman letters when they are scalars. For any integer 𝑑 ≥ 1, we
enote by R𝑑 the 𝑑-dimensional Euclidean space, and write R𝑑

+ (R𝑑
−)

for its nonnegative (nonpositive) orthants. In general, given a vector 𝐚,
we denote its 𝑗’th component by 𝑎𝑗 . However, it is standard notation
that the points of a dataset are denoted by 𝐳1, 𝐳2,… , 𝐳𝑛 ∈ R𝑚+𝑠 where
𝑚 is the number of inputs and 𝑠 is the number of outputs. Hence,
we indicate the component of these vectors using brackets, that is
𝐳 = (𝑧(1), 𝑧(2),… , 𝑧(𝑚 + 𝑠)) and 𝐳𝑖 = (𝑧𝑖(1), 𝑧𝑖(2),… , 𝑧𝑖(𝑚 + 𝑠)). Similarly,
the coefficients of the hyperplanes that appear in our program are
denoted by 𝐩𝑚+𝑠+1,… ,𝐩𝑚+𝑠+ℎ, where 𝐩𝑘 = (𝑝𝑘(1), 𝑝𝑘(2),… , 𝑝𝑘(𝑚 + 𝑠)).
Bold notation 𝟎 and 𝟏 is used to denote the vectors of zeros and ones
respectively, of the adequate dimension for the context in which they
appear.

Given two vectors 𝐚 = (𝑎1,… , 𝑎𝑑 ),𝐛 = (𝑏1,… , 𝑏𝑑 ) ∈ R𝑑 , we denote
by ⟨𝐚 ⋅ 𝐛⟩ their inner product, defined by ⟨𝐚 ⋅ 𝐛⟩ =

∑𝑑
𝑖=1 𝑎𝑖𝑏𝑖. The vector

inequality 𝐚 ≥ 𝐛 (𝐚 > 𝐛) means that the specified inequality holds for
every component, i.e., 𝑎𝑖 ≥ 𝑏𝑖 (𝑎𝑖 > 𝑏𝑖) for all 𝑖 = 1,… , 𝑑. Note that
𝐚 ≥ 𝟎 and 𝐚 ≠ 𝟎, that is, the condition that at least one entry of 𝐚 is
nonzero, is not the same as 𝐚 > 𝟎, which means that every component
of 𝐚 is strictly positive.

2.2. Data envelopment analysis

We begin with some general definitions about the estimation of
production frontiers. The scenario in which we are interested is the
following. We consider 𝑛 decision making units (DMUs), with 𝑚 ≥ 1
inputs and 𝑠 ≥ 1 outputs, (𝐱1, 𝐲1),… , (𝐱𝑛, 𝐲𝑛) ∈ R𝑚+𝑠

+ whose efficiency is
to be evaluated. Each 𝐱𝑖 represents the inputs used by DMU 𝑖 to obtain
𝐲𝑖 outputs. In this paper, for convenience, we use the netput notation
for each DMU, say DMU 𝑖 is 𝐳𝑖 = (−𝐱𝑖, 𝐲𝑖) ∈ R𝑚

− × R𝑠
+, see [31–33]. In

this notation, the input coordinates take nonpositive values while the
outputs take nonnegative values. We denote the netput dataset by .

With this setup, the optimization objective is to maximize each of
the components of 𝐳 while staying in the region of feasible points,
the so-called technology. This allows for a uniform treatment of every
coordinate, regardless of whether it is an input or an output. In some
sense, this uniform treatment and lack of a specialized or target variable
is what gives DEA its unsupervised machine learning nature. Next, we
introduce some key notions in production theory.

Definition 2.1. The technology or production possibility set is

𝑇 ∶= {𝐳 ∈ R𝑚
− × R𝑠

+ ∶ 𝐳 is feasible}.

Let 𝑇 be a technology. Then the Weak Efficient Frontier of 𝑇 is

𝜕𝑊 (𝑇 ) ∶= {𝐳 ∈ 𝑇 ∶ 𝐳̂ > 𝐳 ⇒ 𝐳̂ ∉ 𝑇 }.

The Strong Efficient Frontier of 𝑇 is

𝜕𝑆 (𝑇 ) ∶= {𝐳 ∈ 𝑇 ∶ 𝐳̂ ≥ 𝐳, 𝐳̂ ≠ 𝐳 ⇒ 𝐳̂ ∉ 𝑇 }.

Both types of frontiers represent reference sets that are usually
utilized for measuring technical inefficiency, as the distance between
a netput 𝐳 and the corresponding frontier.

The strong efficient frontier is generally a subset of the weak effi-
cient frontier, but they may coincide. At any point along the strong
efficient frontier, any increase in any variable will result in leaving
3
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the technology, whereas along those points on the weak efficient
frontier which are not on the strong efficient frontier, it is possible to
increase some coordinate while the rest remain fixed and stay within
the technology.

We refer to the theoretical technology as 𝑇 , but as we will often
work with estimates of the technology, we will denote the estimated
technology as 𝑇̂ . There are two main families of approaches to esti-
mating the frontier of a technology in the literature: parametric and
nonparametric methods. In particular, the Data Envelopment Analysis
(DEA) approach is a long-standing nonparametric family of techniques
for estimating production frontiers, and was initiated by Farrell in [34]
for the single output multi-input case, and later taken up and extended
by [7,8]. We take some notation and concepts from [35]. DEA aims
to determine the efficient frontier, and then calculate the efficiency of
each DMU via some measure of distance to the frontier. In particular,
we take the DEA estimated technology 𝑇̂DEA that satisfies the following
properties as introduced by [8].

1. Deterministicness: for all 𝐳 ∈ , 𝐳 ∈ 𝑇̂DEA.
2. Convexity: if 𝐳1,… , 𝐳𝑘 ∈ 𝑇̂DEA and 𝜆𝑗 ≥ 0 for 𝑗 = 1,… , 𝑘 with

∑𝑘
𝑗=1 𝜆𝑗 = 1, then ∑𝑘

𝑗=1 𝜆𝑗𝐳𝑗 ∈ 𝑇̂DEA.
3. Free disposability: for every 𝐳 ∈ 𝑇̂DEA, if 𝐳′ ≤ 𝐳, then 𝐳′ ∈ 𝑇̂DEA.2
4. Minimal extrapolation principle: 𝑇̂DEA is the intersection set of

all sets 𝑇̂ satisfying Properties 1, 2 and 3.

By estimating the smallest set possible, DEA makes a cautious or
conservative estimate of the technology and therefore also a prudent
estimator of the loss due to technical inefficiency [36]. However, for
the same reason, the obtained estimator suffers from overfitting and
may not generalize very well. Our approach attempts to reduce this. In
particular, the DEA estimate of the technology is the convex closure of
the dataset extended to satisfy free disposability within the appropriate
quadrant of signs for the inputs and outputs. We remark that this
estimation gives rise to a piecewise linear boundary for the technology,
which is the main motivation behind our choice of transformation
function in the model.

Once the DEA has obtained an estimate of the technology and its
frontier, it is possible to calculate an estimate of the technical efficiency
of each DMU. There are many measures of efficiency available in the
literature, and the most relevant ones for this paper are the radial
functions [7,8,34], and the directional distance function [31,37,38].

Definition 2.2. Let 𝐳 = (−𝐱, 𝐲) ∈ R𝑚
− × R𝑠

+ be a DMU. The technical
efficiency of 𝐳 is the distance from 𝐳 to 𝜕𝑊 (𝑇 ). Some possibilities for
measuring this distance are:

The output-oriented radial measure or (output-oriented) Farrell mea-
sure: 𝜆(𝐳) = max{𝜆 ∶ (−𝐱, 𝜆𝐲) ∈ 𝑇 }.

The directional distance function with respect to 𝐠 ∈ R𝑚+𝑠
+ , with 𝐠 ≠ 𝟎:

𝛿(𝐳, 𝐠) = max{𝛿 ∶ (𝐳 + 𝛿𝐠) ∈ 𝑇 }.

We remark that the Farrell measure is a particular case of the direc-
tional distance function where, for each 𝐳, we take 𝐠(𝐳) = (0,… , 0, 𝑧(𝑚+
),… , 𝑧(𝑚 + 𝑠)).

.3. OneClassSVM

Support Vector Machines (SVMs) are one of the most recognized and
ommonly used machine learning techniques. They are versatile, and
ave been adapted to almost every type of problem, from classification
o regression (SVR), to unsupervised versions like One-Class Support
ector Machine (OneClassSVM). SVM was first introduced by Vapnik

2 This is one of the advantages of using netputs. We do not need to identify
wo types of inequalities, one for inputs and one for outputs, in the description
f free disposability.
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in [39,40], and is theoretically grounded on solid statistical learning
theory.

The idea behind SVM is to map the predictor space into a high-
dimensional feature space and then construct an optimal hyperplane
which, in the classification setting, separates the different classes. In-
stead of exclusively minimizing the empirical error, it aims to minimize
the upper bound on the generalization error, which results in good
prediction capability.

Furthermore, it is suitable for dealing with a limited number of
samples, regardless of the number of feature variables, since a key point
is that they are mapped to a high-dimensional space. As such, it is
widely used in a variety of machine learning settings, and adaptations
of the general method exist for regression, support estimation, pattern
recognition, data mining, etc. The techniques based on SVMs also
extend to the unsupervised setting, such as for outlier detection and
support estimation. An important extension is the OneClassSVM, first
introduced in [28], which we adapt in this paper for the context of
production theory.

Standard OneClassSVM is a natural extension of the Support Vector
Machine algorithm to the case of unlabeled data, following the point
of view that an unlabeled dataset can be seen as a dataset where only
examples from one of the two considered classes are available. In this
sense, estimating the area where the class of available examples lives
corresponds to estimating the support of the data generating process.

Given a dataset  = {𝐳1,… , 𝐳𝑛 ∈ R𝑁}, we let 𝝓 ∶ R𝑁 → 𝐹 be a
feature map, that is, a transformation of the data into an inner product
space 𝐹 such that the inner product in the image of 𝝓 can be computed
by evaluating some simple kernel 𝐾 given by an inner product via
𝐾(𝐳, 𝐳′) = ⟨𝝓(𝐳) ⋅ 𝝓(𝐳′)⟩.

The decision function of the OneClassSVM algorithm is binary and
returns 1 in the support of the dataset, and −1 everywhere else. It is of
the form

𝑓 (𝐳) = sgn(⟨𝐰 ⋅ 𝝓(𝐳)⟩ − 𝜌), (1)

where the parameters 𝐰 ∈ 𝐹 and 𝜌 ∈ R of the decision function are
obtained by solving the quadratic program (2), which serves to separate
the dataset from the origin in the transformed space 𝐹 . The feature

apping 𝝓 chosen will determine the shape of the efficient frontier,
hich is the boundary of the region where 𝑓 (𝐳) is positive.

min
𝐰∈𝐹 ,𝝃∈R𝑛 ,𝜌∈R

1
2
‖𝐰‖2 + 1

𝜈𝑛

𝑛
∑

𝑖=1
𝜉𝑖 − 𝜌

subject to ⟨𝐰 ⋅ 𝝓(𝐳𝑖)⟩ ≥ 𝜌 − 𝜉𝑖 ∀𝑖 ∈ {1,… , 𝑛}
𝜉𝑖 ≥ 0 ∀𝑖 ∈ {1,… , 𝑛}

(2)

In the quadratic program (2), 𝜈 ∈ (0, 1] is a hyperparameter which,
y [28, Proposition 3], is an upper bound on the proportion of outliers
nd a lower bound on the number of support vectors in the solution.
his is because 𝜈 controls how much we penalize the regularization
erm 𝝃, which will ensure the decision function will be positive on most
f the points in the training set.

The hyperparameters appearing in our model, such as 𝜈, will be
uned via a 70:30 train-test split, where we train a model for each
ombination on 𝑡𝑟𝑎𝑖𝑛, which consists of 70% of the data, and we
valuate its performance 𝑡𝑒𝑠𝑡, which is the remaining 30% of the data
nd is used as a test set, choosing the combination of hyperparameters
hat works best on this unseen subset. We will use the standard mean
quared error to measure the performance of our estimation.

In the literature, the bulk of the work is usually performed on the
ual problem, which involves the kernel function 𝐾. In this paper, the
ual will allow us to prove some results about the role of 𝜈 in the
4

lgorithm, but we will directly solve the primal problem.
.3.1. Piecewise linear feature mapping
We now proceed to describe the feature map 𝝓 which we will

se. Since the boundaries for the technology estimated by DEA are
iecewise linear, we focus on a piecewise linear feature mapping, which
ill result in a piecewise linear boundary. This formulation is named
inging hyperplanes in [41], and was considered in detail in [42],
here a variety of such feature maps are described. The particular

eature mapping that we choose to adapt is [42, (12)] and has the
ollowing form, where 𝑚 + 𝑠 is the dimension of the data, and ℎ is the
umber of hyperplanes in the mapping, which is a hyperparameter of
he algorithm:

(𝐳) =
{

𝑧(𝑘) for 𝑘 ∈ {1,… , 𝑚 + 𝑠}
max{0, ⟨𝐩𝑘 ⋅ 𝐳⟩ + 𝑞𝑘} for 𝑘 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}

(3)

The idea behind this transformation is to split the coordinate space
ia the hyperplanes where ⟨𝐩𝑘 ⋅ 𝐳⟩ + 𝑞𝑘 = 0, so that on the appropriate
ide of each hyperplane that component of the transformation is acti-
ated. As such, the boundary will consist of straight segments between
he hyperplanes, where due to the appearance (or disappearance) of
arious components, the boundary will have a turning point, thus
esulting in a piecewise linear boundary.

We remark that the value of 0 that we compare the hyperplane to
ithin the maximum in the transformation is arbitrary, and changing

t to a different value 𝜇 will correspond to replacing the turning points
f the boundary from the hyperplane ⟨𝐩𝑘 ⋅ 𝐳⟩+ 𝑞𝑘 = 0 to the hyperplane
𝐩𝑘 ⋅ 𝐳⟩ + 𝑞𝑘 = 𝜇, i.e., shifting the cutoff hyperplane by 𝜇. This will

be useful for technical reasons with regard to the planes that we will
choose in our transformation.

The mapping in question has ℎ(𝑚 + 𝑠 + 1) parameters to define, as
ach component involves some 𝐩𝑘 ∈ R𝑚+𝑠 and 𝑞𝑘 ∈ R. Out of the
arious feature mappings defined in [42], we choose their formulation
12) as our kernel. This is because (11), though simpler and requiring
nly ℎ parameters, gives less flexibility to the boundary. The more
omplex transformation (13) involves ℎ(𝑚 + 𝑠)2 + ℎ parameters, which
re computationally more expensive to tune. The following is the
ransformation (13) with 𝑚 + 𝑠 hyperplanes at each coordinate

(𝐳) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧(𝑘)
for 𝑘 ∈ {1,… , 𝑚 + 𝑠}

max{0, ⟨𝐩𝑘1 ⋅ 𝐳⟩ + 𝑞𝑘1,… , ⟨𝐩𝑘(𝑚+𝑠) ⋅ 𝐳⟩ + 𝑞𝑘(𝑚+𝑠)}
for 𝑘 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}

(4)

We remark that [42, Theorem 2] proves that any piecewise linear
et can be represented as the solution of a piecewise linear equation
ith the mapping defined by (13) in [42] when the number of hy-
erplanes in each component of 𝝓 coincides with the dimension of
.

. Unsupervised data envelopment analysis model

In this section, we introduce the so-called unsupervised Data En-
elopment Analysis (uDEA) model for estimating production frontiers,
nd prove some properties related to production theory. The base of the
odel which we adapt is the OneClassSVM algorithm with a piecewise

inear kernel as described in Section 2.3, with some modifications to
atisfy convexity and other required properties linked to efficiency
easurement. The adapted OneClassSVM, i.e., the uDEA model, is
efined as follows:

min
∈R𝑚+𝑠+ℎ ,𝝃∈R𝑛 ,𝜌∈R

1
2
‖𝐰‖2 + 1

𝜈𝑛

𝑛
∑

𝑖=1
𝜉𝑖 − 𝜌 (5)

subject to ⟨𝐰 ⋅ 𝝓(𝐳 )⟩ ≥ 𝜌 − 𝜉 ∀𝑖 ∈ {1,… , 𝑛} (5a)
𝑖 𝑖
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𝐼

t

𝜉𝑖 ≥ 0 ∀𝑖 ∈ {1,… , 𝑛} (5b)

𝑤𝑗 ≥ 0 ∀𝑗 ∈ {1,… , 𝑚 + 𝑠 + ℎ} (5c)

⟨𝐰 ⋅ 𝝓(𝟎)⟩ = 𝜌 (5d)

Model (5) is a quadratic program where the objective function and
estrictions (5a) and (5b) are identical to those of (2), whereas restric-
ion (5c) will ensure convexity, and restriction (5d) will guarantee that
he efficient frontier will pass through the origin, as we will prove
ater in this section. For the choice of feature mapping 𝝓, we use the
ollowing adaptation of (3):

(𝐳) =
{

−𝑧(𝑘) for 𝑘 ∈ {1,… , 𝑚 + 𝑠}
−max{𝜇, ⟨𝐩𝑘 ⋅ 𝐳⟩ + 𝑞𝑘} for 𝑘 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}

(6)

The modifications to 𝝓 are as follows. The 0 inside the maximum has
een replaced by an offset hyperparameter 𝜇 that we will tune, and we
lso add a negative sign to the mapping. The sign change transforms the
riginal convex, nondecreasing function into a concave, nonincreasing
apping, which are the necessary conditions to obtain a convex set

atisfying free disposability, as we will show. Additionally, 𝐩𝑘 and 𝑞𝑘
re hyperparameters of the model to be determined and are linked
o the coefficients and offset, respectively, of different hyperplanes.
ection 3.3 introduces a way of setting these hyperparameters.

We now prove some key properties of the chosen feature mapping,
hich will be useful for establishing certain features of the technology

nduced by Model (5).

emma 3.1. For all 𝑘 ∈ {1,… , 𝑚 + 𝑠 + ℎ}, 𝜙𝑘(𝐳) is a concave function.
urthermore, if 𝐩𝑘 ≥ 𝟎, then whenever 𝐳′ ≥ 𝐳 we have 𝜙𝑘(𝐳′) ≤ 𝜙𝑘(𝐳).

roof. For 𝑘 ∈ {1,… , 𝑚 + 𝑠}, 𝜙𝑘(𝐳) = −𝑧(𝑘) which is a nonincreasing
linear function, hence concave.

For 𝑘 ∈ {𝑚+𝑠+1,… , 𝑚+𝑠+ℎ}, 𝜙𝑘(𝐳) = −max{𝜇, ⟨𝐩𝑘 ⋅𝐳⟩+𝑞𝑘}. Both 𝜇
and ⟨𝐩𝑘 ⋅𝐳⟩+𝑞𝑘 are linear functions, hence convex, which means that the
area above their curves is convex. Now the area above the curve of the
max of two functions is the intersection of those of the two functions,
so as the intersection of convex sets is convex, max{𝜇, ⟨𝐩𝑘 ⋅ 𝐳⟩ + 𝑞𝑘} is
convex, hence 𝜙𝑘(𝐳) is concave.

Furthermore, if 𝐩𝑘 ≥ 𝟎 then ⟨𝐩𝑘 ⋅ 𝐳⟩ + 𝑞𝑘 is nondecreasing. As 𝜇 is
constant, we see that 𝜙𝑘(𝐳) is nonincreasing. Thus, 𝜙𝑘(𝐳) is nonincreas-
ing for all 𝑘 ∈ {1,… , 𝑚 + 𝑠 + ℎ}, and so, whenever 𝐳′ ≥ 𝐳, we have
𝜙𝑘(𝐳′) ≤ 𝜙𝑘(𝐳). □

From now on, we will denote by (𝐰∗, 𝝃∗, 𝜌∗) an optimal solution
of Model (5). As with OneClassSVM, the above optimization problem
defines a decision function

𝑓uDEA(𝐳) = sgn(⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ − 𝜌∗)

which will be positive on most examples 𝐳𝑖, while potentially leaving
some outliers taking negative values. This will be regulated by the
hyperparameter 𝜈 involved in Program (5), which in practice will be
small. We will make this relationship precise in Lemma 3.9. We now
define various basic notions related to Model (5).

Definition 3.2. The estimated technology defined by the optimization
problem (5) is

𝑇̂uDEA = {𝐳 ∈ R𝑚
− × R𝑠

+ ∶ ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ ≥ 𝜌∗}.

Additionally, we define the frontier of 𝑇̂uDEA as 𝐹 (𝑇̂uDEA) = {𝐳 ∈
R𝑚
− × R𝑠

+ ∶ ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ = 𝜌∗}, and its weak frontier as 𝐹𝑊 (𝑇̂uDEA) =
𝐹 (𝑇̂ ) ∪ {𝐳 ∈ 𝑇̂ ∶ 𝑧(𝑘) = 0 for some 𝑘 ∈ {1,… , 𝑚}}.
5

uDEA uDEA
Notice that 𝟎 ∈ 𝐹 (𝑇̂uDEA) by definition of the frontier and restriction
(5d).

The weak frontier is useful in the case that the estimated technology
does not live in the appropriate quadrant for the netput setting, R𝑚

− ×
R𝑠
+, and includes a section along which some input coordinate is 0.

Furthermore, if 𝐹 (𝑇̂uDEA) ⊆ R𝑚
− × R𝑠

+, then 𝐹𝑊 (𝑇̂uDEA) = 𝐹 (𝑇̂uDEA).
The name of weak frontier comes from the fact, which we will prove,
that these extra added sections will be on the weak efficient frontier,
𝜕𝑊 (𝑇̂uDEA) = {𝐳 ∈ 𝑇̂uDEA ∶ 𝐳̂ > 𝐳 ⇒ 𝐳̂ ∉ 𝑇̂uDEA}, but not on the strong
efficient frontier 𝜕𝑆 (𝑇̂uDEA) = {𝐳 ∈ 𝑇̂uDEA ∶ 𝐳̂ ≥ 𝐳, 𝐳̂ ≠ 𝐳 ⇒ 𝐳̂ ∉ 𝑇̂uDEA} of
uDEA.

3.1. Properties

We now proceed to prove convexity and free disposability of 𝑇̂uDEA.
In particular, convexity of 𝑇̂uDEA will hold for any concave 𝝓, while any
nonincreasing 𝝓 will give rise to an estimated technology satisfying free
disposability.

Proposition 3.3. 𝑇̂uDEA is convex.

Proof. Let 𝐳′, 𝐳† ∈ 𝑇̂uDEA. We need to prove that, for any 𝜆 ∈ [0, 1],
we have 𝐳 = 𝜆𝐳′ + (1 − 𝜆)𝐳† ∈ 𝑇̂uDEA. Since 𝐳′, 𝐳† ∈ 𝑇̂uDEA, we have
⟨𝐰∗ ⋅ 𝝓(𝐳′)⟩ ≥ 𝜌∗ and ⟨𝐰∗ ⋅ 𝝓(𝐳†)⟩ ≥ 𝜌∗. Let 𝜆 ∈ [0, 1]. Then, since 𝜆 ≥ 0
and 1 − 𝜆 ≥ 0, we observe that 𝐳 = 𝜆𝐳′ + (1 − 𝜆)𝐳† ∈ R𝑚

− × R𝑠
+.

By Lemma 3.1, 𝜙𝑘(𝐳) is a concave function for all 𝑘 ∈ {1,… , 𝑚+ 𝑠+
}, hence so is 𝝓(𝐳). Thus, we have 𝝓(𝜆𝐳′+(1−𝜆)𝐳†) ≥ 𝜆𝝓(𝐳′)+(1−𝜆)𝝓(𝐳†).
urthermore, as 𝐰∗ ≥ 𝟎 by constraint (5c), we have

𝐰∗ ⋅𝝓(𝐳)⟩ = ⟨𝐰∗ ⋅𝝓(𝜆𝐳′+(1−𝜆)𝐳†)⟩ ≥ 𝜆⟨𝐰∗ ⋅𝝓(𝐳′)⟩+(1−𝜆)⟨𝐰∗ ⋅𝝓(𝐳†)⟩ ≥ 𝜌∗.

In other words, 𝐳 ∈ 𝑇̂uDEA. Therefore, 𝑇̂uDEA is convex. □

We remark that convexity of 𝑇̂uDEA relies only on concavity of 𝝓 and
∗ ≥ 𝟎. For free disposability, the additional assumption that 𝐩𝑘 ≥ 𝟎 is

equired.

roposition 3.4. Suppose that 𝐩𝑘 ≥ 𝟎 for all 𝑘 ∈ {𝑚+𝑠+1,… , 𝑚+𝑠+ℎ}.
hen 𝑇̂uDEA satisfies free disposability. In other words, if 𝐳 ∈ 𝑇̂uDEA and
′ ≤ 𝐳 with 𝐳′ ∈ R𝑚

− × R𝑠
+ then 𝐳′ ∈ 𝑇̂uDEA.

roof. Assume 𝐳 ∈ 𝑇̂uDEA and let 𝐳′ ≤ 𝐳. Then, we have ⟨𝐰∗ ⋅𝝓(𝐳)⟩ ≥ 𝜌∗.
s 𝐩𝑘 ≥ 𝟎, Lemma 3.1 implies that 𝜙𝑘(𝐳′) ≥ 𝜙𝑘(𝐳) for all 𝑘 ∈ {1,… , 𝑚 +
+ ℎ}. Furthermore, since 𝐰∗ ≥ 𝟎, we have 𝑤∗

𝑘𝜙𝑘(𝐳′) ≥ 𝑤∗
𝑘𝜙𝑘(𝐳) for all

∈ {1,… , 𝑚 + 𝑠 + ℎ}. Therefore, ⟨𝐰∗ ⋅ 𝝓(𝐳′)⟩ ≥ ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ ≥ 𝜌∗ and, as
′ ∈ R𝑚

− × R𝑠
+, we have proved that 𝐳′ ∈ 𝑇̂uDEA as claimed. Thus, 𝑇̂uDEA

atisfies free disposability. □

.2. The production frontier

We now compare the sets 𝐹 (𝑇̂uDEA) and 𝐹𝑊 (𝑇̂uDEA) with 𝜕𝑊 (𝑇̂uDEA)
nd 𝜕𝑆 (𝑇̂uDEA). The weak and strong frontiers were introduced in Def-
nition 2.1. We remark that since 𝜕𝑊 (𝑇̂uDEA) ⊆ 𝑇̂uDEA, the coordinates
f 𝐳 ∈ 𝜕𝑊 (𝑇̂uDEA) already have the appropriate signs for netputs due to
he definition of 𝑇̂uDEA, and similarly for 𝜕𝑆 (𝑇̂uDEA). The two frontiers,
owever, behave differently along points where some input is 0, where
t may be the case that some such areas are in 𝜕𝑊 (𝑇̂uDEA) ⧵ 𝜕𝑆 (𝑇̂uDEA).

In order to state the next result, we define the following function
hich selects the indices where the maximum term in the feature
apping attains its cutoff value of −𝜇. Let 𝐳, 𝐳̂ ∈ R𝑚+𝑠. Then

1(𝐳, 𝐳̂) = {𝑘 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ} ∶ 𝜙𝑘(𝐳) = 𝜙𝑘(𝐳̂) = −𝜇}.

Then, the relationship between the weak frontier 𝐹𝑊 (𝑇̂uDEA) and
he weak efficient frontier 𝜕𝑊 (𝑇̂ ) is as follows:
uDEA
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Proposition 3.5. Assume that 𝐩𝑘 ≥ 𝟎 with 𝐩𝑘 ≠ 𝟎 for all 𝑘 ∈ {𝑚 + 𝑠 +
1,… , 𝑚+𝑠+ℎ}. Then either 𝜕𝑊 (𝑇̂uDEA) = 𝐹𝑊 (𝑇̂uDEA) or 𝐹 (𝑇̂uDEA) = 𝑇̂uDEA.
The latter case can only happen when there is 𝐳 ∈ 𝐹𝑊 (𝑇̂uDEA) and 𝐳̂ > 𝐳
such that 𝜌∗ = −𝜇

∑

𝑘∈𝐼1(𝐳,𝐳̂) 𝑤
∗
𝑘 and 𝑤∗

𝑘 = 0 for all 𝑘 ∉ 𝐼1(𝐳, 𝐳̂).

Proof. We begin by proving that 𝜕𝑊 (𝑇̂uDEA) ⊆ 𝐹𝑊 (𝑇̂uDEA). Let 𝐳 ∈
𝑇̂uDEA ⧵ 𝐹𝑊 (𝑇̂uDEA). Then, ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ = 𝜌∗ + 𝜀 > 𝜌∗ for some 𝜀 > 0, and
𝑧(𝑘) < 0 for all 𝑘 ∈ {1,… , 𝑚}. Note that ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ is a continuous
function. Then, by definition of continuity, there exists 𝑟 > 0 such
that the ball 𝐵𝑟(𝐳) of radius 𝑟 > 0 centered at 𝐳 satisfies that for every
𝐳∗ ∈ 𝐵𝑟(𝐳) we have ⟨𝐰∗ ⋅𝝓(𝐳∗)⟩ > 𝜌∗. Since 𝑧(𝑘) < 0 for all 𝑘 ∈ {1,… , 𝑚},
we have 𝐵𝑟(𝐳) ∩ {𝐭 ∈ R𝑚

− × R𝑠
+ ∶ 𝐭 > 𝐳} ≠ ∅.

Let 𝐳∗ ∈ 𝐵𝑟(𝐳) ∩ {𝐭 ∈ R𝑚
− × R𝑠

+ ∶ 𝐭 > 𝐳}, then 𝐳∗ satisfies 𝐳∗ > 𝐳 with
⟨𝐰∗ ⋅ 𝝓(𝐳∗)⟩ > 𝜌∗, that is 𝐳∗ ∈ 𝑇̂uDEA, which proves that 𝐳 ∉ 𝜕𝑊 (𝑇̂uDEA).
Therefore, 𝜕𝑊 (𝑇̂uDEA) ⊆ 𝐹𝑊 (𝑇̂uDEA). Note that this holds regardless of
the value of 𝜌∗ and 𝐰∗.

Now, we consider the inclusion 𝐹𝑊 (𝑇̂uDEA) ⊆ 𝜕𝑊 (𝑇̂uDEA). Let 𝐳 ∈
𝐹𝑊 (𝑇̂uDEA), then either ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ = 𝜌∗ or 𝐳 ∈ 𝑇̂uDEA with 𝑧(𝑘) = 0 for
some 𝑘 = {1,… , 𝑚}. In the second case, 𝐳̂ > 𝐳 implies that 𝑧̂(𝑘) > 0 for
some 𝑘 = {1,… , 𝑚}, so 𝐳̂ ∉ 𝑇̂uDEA as required.

If ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ = 𝜌∗, we suppose that 𝐳̂ satisfies 𝐳̂ > 𝐳. Then, we need
to prove that ⟨𝐰∗ ⋅ 𝝓(𝐳̂)⟩ < 𝜌∗, that is 𝐳̂ ∉ 𝑇̂uDEA. By Lemma 3.1, we
have 𝜙𝑘(𝐳̂) ≤ 𝜙𝑘(𝐳) for all 𝑘 ∈ {1,… , 𝑚 + 𝑠 + ℎ} so, as 𝐰∗ ≥ 𝟎, we
have 𝑤∗

𝑘𝜙𝑘(𝐳̂) ≤ 𝑤∗
𝑘𝜙𝑘(𝐳). Then, ⟨𝐰∗ ⋅ 𝝓(𝐳̂)⟩ ≤ ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩. Assume that

⟨𝐰∗ ⋅ 𝝓(𝐳̂)⟩ = ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩. Then, as 𝑤∗
𝑘𝜙𝑘(𝐳̂) ≤ 𝑤∗

𝑘𝜙𝑘(𝐳) for all 𝑘, we must
have 𝑤∗

𝑘𝜙𝑘(𝐳̂) = 𝑤∗
𝑘𝜙𝑘(𝐳) for all 𝑘 ∈ {1,… , 𝑚 + 𝑠 + ℎ}.

For 𝑘 ∈ {1,… , 𝑚 + 𝑠}, we have 𝜙𝑘(𝐳) = −𝑧(𝑘) so, as 𝐳̂ > 𝐳, we have
𝜙𝑘(𝐳̂) < 𝜙𝑘(𝐳). Thus, in order to have 𝑤∗

𝑘𝜙𝑘(𝐳̂) = 𝑤∗
𝑘𝜙𝑘(𝐳), we must have

𝑤∗
𝑘 = 0.

For 𝑘 ∈ {𝑚+ 𝑠+1,… , 𝑚+ 𝑠+ℎ}, 𝜙𝑘(𝐳) = −max{𝜇, ⟨𝐩𝑘 ⋅ 𝐳⟩+ 𝑞𝑘} ≤ −𝜇,
and we have different cases.

• If 𝜙𝑘(𝐳̂) = −𝜇 then, as 𝜙𝑘(𝐳̂) ≤ 𝜙𝑘(𝐳) ≤ −𝜇, we have 𝜙𝑘(𝐳) = −𝜇.
Then 𝑘 ∈ 𝐼1(𝐳, 𝐳̂) and equality is possible.

• If 𝜙𝑘(𝐳̂) ≠ −𝜇 but 𝜙𝑘(𝐳) = −𝜇 then we must have 𝑤∗
𝑘 = 0.

• Finally, if 𝜙𝑘(𝐳̂) and 𝜙𝑘(𝐳) are both strictly smaller than −𝜇 then
𝜙𝑘(𝐳̂) = −⟨𝐩𝑘 ⋅ 𝐳̂⟩ − 𝑞𝑘 ≤ −⟨𝐩𝑘 ⋅ 𝐳⟩ − 𝑞𝑘 = 𝜙𝑘(𝐳). Then, as 𝐳̂ > 𝐳,
in order to have 𝑤∗

𝑘𝜙𝑘(𝐳̂) = 𝑤∗
𝑘𝜙𝑘(𝐳) we need that either 𝐩𝑘 = 𝟎

or 𝑤∗
𝑘 = 0. As we assume that the first does not happen, we must

have 𝑤∗
𝑘 = 0.

Then, as ⟨𝐰∗ ⋅ 𝝓(𝐳̂)⟩ = ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ = 𝜌∗, we must have

𝜌∗ = ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ = −
𝑚+𝑠
∑

𝑘=1
0 ⋅ 𝑧(𝑘) −

∑

𝑘∈𝐼1(𝐳,𝐳̂)
𝑤∗

𝑘 ⋅max{𝜇, 𝜇}

−
∑

𝑘∉𝐼1(𝐳,𝐳̂)
0 ⋅max{𝜇, ⟨𝐩𝑘 ⋅ 𝐳⟩ + 𝑞𝑘}

= −
∑

𝑘∈𝐼1(𝐳,𝐳̂)
𝑤∗

𝑘𝜇.

(7)

Thus, whenever 𝜌∗ ≠ −𝜇
∑

𝑘∈𝐼1(𝐳,𝐳̂) 𝑤
∗
𝑘 or 𝑤∗

𝑘 ≠ 0 for some 𝑘 ∉ 𝐼1(𝐳, 𝐳̂),
we have ⟨𝐰∗ ⋅ 𝝓(𝐳̂)⟩ < ⟨𝐰∗ ⋅ 𝝓(𝐳)⟩ = 𝜌∗, that is 𝐳̂ ∉ 𝑇̂uDEA, hence proving
that 𝐹𝑊 (𝑇̂uDEA) ⊆ 𝜕𝑊 (𝑇̂uDEA).

Now, assume that 𝜌∗ = −𝜇
∑

𝑘∈𝐼1(𝐳,𝐳̂) 𝑤
∗
𝑘 and 𝑤∗

𝑘 = 0 for all 𝑘 ∉
𝐼1(𝐳, 𝐳̂). Then, for all 𝐳′ ∈ R𝑚+𝑠, we have ⟨𝐰∗ ⋅ 𝝓(𝐳′)⟩ = −

∑

𝑘∈𝐼1(𝐳,𝐳̂) 𝑤
∗
𝑘 ⋅

max{𝜇, ⟨𝐩𝑘 ⋅ 𝐳′⟩ + 𝑞𝑘} ≤ 𝜌∗, so 𝑇̂uDEA = 𝐹 (𝑇̂uDEA). □

The relationship with the strong efficient frontier of 𝑇̂uDEA is the
following.

Proposition 3.6. Assume that 𝐩𝑘 > 𝟎. If 𝜕𝑊 (𝑇̂uDEA) = 𝐹𝑊 (𝑇̂uDEA) then
𝜕𝑆 (𝑇̂uDEA) = 𝐹 (𝑇̂uDEA).

Proof. We will prove that 𝜕𝑊 (𝑇̂uDEA) ⧵ 𝜕𝑆 (𝑇̂uDEA) = {𝐳 ∈ 𝑇̂uDEA ∶
𝑧(𝑘) = 0 for some 𝑘 ∈ {1,… , 𝑚}}. The lemma follows from this
and Proposition 3.5. Note that, by definition, we have 𝜕𝑆 (𝑇̂uDEA) ⊆
𝑊 ̂
6

𝜕 (𝑇uDEA).
Let 𝐳 ∈ 𝜕𝑊 (𝑇̂uDEA) ⧵ 𝜕𝑆 (𝑇̂uDEA). Then, there exists some 𝐳̂ ∈ 𝑇̂uDEA
such that 𝐳̂ ≥ 𝐳 with 𝐳̂ ≠ 𝐳 but 𝐳̂ ≯ 𝐳. In other words, there exist
𝑖, 𝑗 ∈ {1,…𝑚 + 𝑠} such that 𝑧̂(𝑖) = 𝑧(𝑖) but 𝑧̂(𝑗) > 𝑧(𝑗). Pick such a
𝐳̂.

Now, since 𝜕𝑊 (𝑇̂uDEA) = 𝐹𝑊 (𝑇̂uDEA), we have either ⟨𝐰∗ ⋅𝝓(𝐳)⟩ = 𝜌∗,
or 𝑧(𝑘′) = 0 for some 𝑘′ ∈ {1,… , 𝑚}. In the former case, by Lemma 3.1
we have 𝜙𝑘(𝐳̂) ≤ 𝜙𝑘(𝐳) for all 𝑘 ∈ {1,… , 𝑚 + 𝑠 + ℎ}, and so, since
𝑤∗

𝑘 ≥ 0, it follows that 𝑤∗
𝑘𝜙𝑘(𝐳̂) ≤ 𝑤∗

𝑘𝜙𝑘(𝐳) for all 𝑘 ∈ {1,… , 𝑚 + 𝑠 + ℎ},
hence 𝝓(𝐳̂) ≤ 𝝓(𝐳), with equality only if every component is equal or
the corresponding 𝑤∗

𝑘 = 0.
In order to have equality, we must have −max{𝜇, ⟨𝐩𝑘 ⋅ 𝐳̂⟩ + 𝑞𝑘} =

−max{𝜇, ⟨𝐩𝑘 ⋅ 𝐳⟩+ 𝑞𝑘} for all 𝑘, so that whenever ⟨𝐩𝑘 ⋅ 𝐳⟩+ 𝑞𝑘 is greater
than 𝜇 we must have ∑𝑚+𝑠

𝑗=1 𝑝𝑘(𝑗)𝑧̂(𝑗) = ⟨𝐩𝑘 ⋅ 𝐳̂⟩ = ⟨𝐩𝑘 ⋅𝐳⟩ =
∑𝑚+𝑠

𝑗=1 𝑝𝑘(𝑗)𝑧(𝑗).
By assumption, 𝑝𝑘(𝑗) > 0 for all 𝑘, 𝑗, so we must have 𝑧(𝑗) = 𝑧̂(𝑗) for all
𝑗, contradicting our assumption that 𝐳 ∈ 𝜕𝑊 (𝑇̂uDEA) ⧵ 𝜕𝑆 (𝑇̂uDEA).

Thus, if 𝐳 ∈ 𝜕𝑊 (𝑇̂uDEA) ⧵ 𝜕𝑆 (𝑇̂uDEA) then 𝑧(𝑘′) = 0 for some 𝑘′ ∈
{1,… , 𝑚}, and 𝜕𝑆 (𝑇̂uDEA) = 𝐹 (𝑇̂uDEA). □

Regarding the hypothesis in Proposition 3.6, we remark that it is not
necessary that 𝑝𝑘(𝑗) > 0 for all 𝑘 and 𝑗, it is enough to obtain inequal-
ity along some component along which we remain in the estimated
technology.

3.3. Choosing the parameters for the piecewise linear transformation.

We now describe how we choose the parameters 𝐩𝑘 and 𝑞𝑘 of the
transformation mapping 𝝓 which define the hyperplanes. We will also,
along the way, determine an appropriate value of ℎ, and introduce 𝜇.
As discussed in Section 2.3.1, each of the components 𝜙𝑘(𝐳) involving
a hyperplane will get activated whenever 𝐳 is on the appropriate side
of the hyperplane, and attain the value −𝜇 elsewhere.

As such, the parameters in piecewise linear feature mappings de-
termine the hyperplanes along which the boundary of the estimated
technology changes its direction, and the SVM optimization technique
then finds the best parameters to minimize the distance from the
dataset to the boundary. As a consequence, the results obtained by
uDEA will heavily depend on which planes are involved in the feature
mapping. Since the hyperplanes determine where the boundary is
allowed turning points, we observe that these hyperplanes should be
located in the region between the observed DMUs and the theoretical
boundary, which will typically be unknown, but will determine a
slightly larger region than the convex hull of the dataset , which is
the region determined by DEA.

Since DEA satisfies the minimal extrapolation principle, it will
yield an estimated technology which is contained in the theoretical
technology, and the hyperplanes which define the DEA boundary will
be appropriate turning points for our estimator of the technology.

DEA determines the convex hull of the points, and as such assigns
to each DMU 𝐳𝑖 a supporting hyperplane (𝐩𝑘, 𝑞𝑘), and these will be used
as a basis for our parameters.

We use the directional distance function program in its multiplier
form, which can be found in [43, Program 3]. We solve the following
program 𝑛 times, one for each 𝐳𝑖 ∈ . We choose the directional
function 𝐠 = 𝟏, which corresponds to the Chebyshev norm or 𝑙∞ norm
as introduced in [44].

When adapted to the netput setting, the linear program to solve for
DMU 𝐳𝑖 is:

min
𝐩𝑘 ,𝑞𝑘

−⟨𝐩𝑘 ⋅ 𝐳𝑖⟩ − 𝑞𝑘 = −𝜇𝑖
subject to ⟨𝐩𝑘 ⋅ 𝐳𝑟⟩ + 𝑞𝑘 ≤ 0 ∀𝑟 ∈ {1,… , 𝑛}

⟨𝐩𝑘 ⋅ 𝟏⟩ = 1
𝐩𝑘 ≥ 𝟎

(8)

The solution to this problem gives us the parameters 𝐩𝑘 and 𝑞𝑘 of
a supporting hyperplane for the technology estimated by DEA, which
is the convex hull of  plus the region generated by free disposability.
Due to our notation, 𝑘 = 𝑚+𝑠+𝑖, so that the planes associated with each
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Table 1
Correspondence between dual variables and primal
restrictions.

Dual variables Primal restrictions

𝛼𝑖 ⟨𝐰 ⋅ 𝝓(𝐳𝑖)⟩ ≥ 𝜌 − 𝜉𝑖
𝛽𝑖 = 1∕𝜈𝑛 − 𝛼𝑖 𝜉𝑖 ≥ 0
𝛾𝑗 𝑤𝑗 ≥ 0
𝛼0 ⟨𝐰 ⋅ 𝝓(𝟎)⟩ = 𝜌

DMU appear in the same order in the transformation 𝝓. The hyperplane
thus defined is the region of the convex closure 𝑇̂DEA to which the DMU
𝐳𝑖 is projected along the directional vector 𝐠. As such, each hyperplane
will contain every DMU in the region where ⟨𝐩𝑘 ⋅ 𝐳𝑖⟩ + 𝑞𝑘 ≤ 0 and
ass through at least one DMU. Furthermore, since the values of 𝐩𝑘
re nonnegative and add up to one, the coefficients of the hyperplanes
re normalized.

With this setup, we obtain 𝑛 hyperplanes, so that ℎ = 𝑛, that is, the
umber of hyperplanes in 𝝓 is the number of DMUs in the dataset. The
yperplanes may be repeated, since more than one DMU can project
o the same region of the convex closure. Furthermore, for each DMU
𝑖, we obtain a measure 𝜇𝑖 = ⟨𝐩𝑘 ⋅ 𝐳𝑖⟩ + 𝑞𝑘 ≤ 0 of the inefficiency of 𝐳𝑖,
hich is the term 𝜙𝑘(𝐳𝑖) in the corresponding restriction (5a). As such,
e obtain that the value of 𝜙𝑘(𝐳𝑖) = −max{𝜇, ⟨𝐩𝑘⋅𝐳𝑖⟩+𝑞𝑘} = −max{𝜇, 𝜇𝑖}

depends on the value of 𝜇. Therefore, we observe that 𝜇 acts as a cutoff
arameter which forces 𝜙𝑘(𝐳𝑖) = −𝜇 whenever 𝜇𝑖 = ⟨𝐩𝑘 ⋅ 𝐳𝑖⟩ + 𝑞𝑘 ≤ 𝜇
nd, as such, gives a constant value to all components that arise from
MUs that are further from the DEA estimated efficient frontier than

he cutoff distance 𝜇. We define 𝜇min ∶= min𝑖{𝜇𝑖}, then an appropriate
interval of possible values for the hyperparameter 𝜇 is [𝜇min, 0).

In particular, the closer that 𝜇 is to 0, the fewer terms that will
appear in 𝝓 with values different to −𝜇, and when 𝜇 = min𝑖{𝜇𝑖} then
every single point will give rise to a plane which sometimes takes values
larger than −𝜇. Furthermore, as 𝜇 changes values, the cutoff region
where each hyperplane is activated will be translated by that amount,
slightly changing the region where the boundary changes direction.

3.4. Lagrangian, dualization, and outlier control

In order to prove some results about when DMUs are on the efficient
frontier, outliers, or support vectors, as well as the role of the hyper-
parameter 𝜈, we will use the dual problem of (5) as calculated in the
Appendix, which is the following:

min
𝜶,𝜸,𝛼0

1
2
‖𝐰‖2

subject to 0 ≤ 𝛼𝑖 ≤ 1∕𝜈𝑛 for 𝑖 ∈ {1,… , 𝑛},
𝑛
∑

𝑖=1
𝛼𝑖 + 𝛼0 = 1,

𝜸 ≥ 𝟎,

(9)

where 𝐰 =
∑𝑛

𝑖=1 𝛼𝑖𝝓(𝐳𝑖) + 𝜸 + 𝛼0𝝓(𝟎) (see Appendix, in particular
A.1), for the details).

The correspondence between variables of the dual and restrictions
f the primal problem appears in Table 1.

We now consider what information about solutions of the primal
roblem is given by the dual. Since we are working with a stan-
ard quadratic program, the Karush–Kuhn–Tucker (KKT) conditions
re both necessary and sufficient conditions to check that a solution
s optimal for the problem. In particular, complementary slackness
olds. This allows us to prove the following, where we assume that
𝐰∗, 𝝃∗, 𝜌∗,𝜶∗, 𝜷∗, 𝜸∗, 𝛼∗0 ) is a solution of the KKT conditions.

roposition 3.7. The following hold for each 𝑖 ∈ {1,… , 𝑛}:

(1) If 0 < 𝛼∗𝑖 < 1∕𝜈𝑛 then 𝐳𝑖 ∈ 𝐹 (𝑇̂uDEA).
̂ ̂ ∗
7

(2) If 𝐳𝑖 ∈ 𝑇uDEA ⧵ 𝐹 (𝑇uDEA) then 𝛼𝑖 = 0.
(3) 𝐳𝑖 ∈ 𝑇̂uDEA if and only if 𝜉∗𝑖 = 0.

Proof. Let (𝐰∗, 𝝃∗, 𝜌∗,𝜶∗, 𝜷∗, 𝜸∗, 𝛼∗0 ) be a solution of the KKT conditions.
Then, the following hold for all 𝑖 ∈ {1,… , 𝑛} and all 𝑗 ∈ {1,… , 𝑚+𝑠+ℎ}:

(KKT1) Either 𝛼∗𝑖 = 0 or ⟨𝐰∗ ⋅ 𝝓(𝐳𝑖)⟩ = 𝜌∗ − 𝜉∗𝑖

(KKT2) Either 𝛽∗𝑖 = 1∕𝜈𝑛 − 𝛼∗𝑖 = 0 or 𝜉∗𝑖 = 0

(KKT3) Either 𝛾∗𝑗 = 0 or 𝑤∗
𝑗 = 0.

If 0 < 𝛼∗𝑖 < 1∕𝜈𝑛 then (KKT2) implies that 𝜉∗𝑖 = 0 and thus (KKT1)
implies that ⟨𝐰∗ ⋅ 𝝓(𝐳𝑖)⟩ = 𝜌∗. As 𝐳𝑖 ∈ R𝑚

− × R𝑠
+, this means that

𝐳𝑖 ∈ 𝐹 (𝑇̂uDEA), and so part (1) holds.
Now, assume that 𝐳𝑖 ∈ 𝑇̂uDEA ⧵𝐹 (𝑇̂uDEA), then the second equality of

(KKT1) does not hold, so we must have 𝛼∗𝑖 = 0, and (2) holds.
For (3), we first assume that 𝜉∗𝑖 ≠ 0. Then, 𝛽∗𝑖 = 0 by (KKT2) and so,

by (KKT1), we must have ⟨𝐰∗ ⋅ 𝝓(𝐳𝑖)⟩ = 𝜌∗ − 𝜉∗𝑖 < 𝜌∗, that is 𝐳𝑖 ∉ 𝑇̂uDEA.
Conversely, if 𝐳𝑖 ∉ 𝑇̂uDEA, we have that ⟨𝐰∗ ⋅ 𝝓(𝐳𝑖)⟩ < 𝜌∗. But from the
statement of the problem, we must have ⟨𝐰∗ ⋅ 𝝓(𝐳𝑖)⟩ ≥ 𝜌∗ − 𝜉∗𝑖 . Thus,
𝜉∗𝑖 ≠ 0. □

The converses to (1) and (2) are not necessarily true, as the KKT
conditions force at least one of the two components involved to be 0,
but both could be 0 at the same time.

We now study the link between the hyperparameter 𝜈 and the
number of support vectors and outliers obtained. We begin by defining
these concepts.

Definition 3.8. The DMUs 𝐳𝑖 with 𝛼∗𝑖 > 0 are called support vectors. Let
𝑛𝑆𝑉 be the number of support vectors, 𝑛𝑆𝑉 = |{𝑖 ∶ 𝛼∗𝑖 > 0}|. The DMUs
𝐳𝑖 with 𝜉∗𝑖 > 0 are called outliers. Let 𝑛𝑂𝐿 be the number of outliers, that
is 𝑛𝑂𝐿 = |{𝑖 ∶ 𝜉∗𝑖 > 0}|.

We will prove that 𝜈 controls the proportion of points that are
allowed to be outliers and the proportion of points that are forced to
be support vectors. Recall that (𝐰∗, 𝝃∗, 𝜌∗,𝜶∗, 𝜷∗, 𝜸∗, 𝛼∗0 ) is a solution of
the KKT conditions.

Lemma 3.9. The number of outliers is at most 𝜈𝑛(1 − 𝛼∗0 ) ≤ 𝜈𝑛 and the
number of support vectors is at least 𝜈𝑛(1 − 𝛼∗0 ). In other words,

𝑛𝑂𝐿 ≤ 𝜈𝑛(1 − 𝛼∗0 ) ≤ 𝑛𝑆𝑉 .

Proof. The values 𝛼∗𝑖 have the restrictions 0 ≤ 𝛼∗𝑖 ≤ 1∕𝑛𝜈 for 𝑖 ∈
{1,… , 𝑛} and ∑𝑛

𝑖=1 𝛼
∗
𝑖 + 𝛼∗0 = 1. Thus, 0 ≤ 𝛼∗0 = 1 −

∑𝑛
𝑖=1 𝛼

∗
𝑖 ≤ 1. A

point 𝐳𝑖 is an outlier if and only if 𝜉∗𝑖 > 0 so, by Proposition 3.7 (2),
𝛽∗𝑖 = 0 and so 𝛼∗𝑖 = 1∕𝜈𝑛. Thus, we have 1 =

∑𝑛
𝑖=1 𝛼

∗
𝑖 +𝛼∗0 ≥ 𝑛𝑂𝐿∕𝜈𝑛+𝛼∗0 ,

that is 𝑛𝑂𝐿 ≤ 𝜈𝑛(1 − 𝛼∗0 ).
Furthermore, the only elements that contribute to the sum are the

support vectors 𝐳𝑖, which have 0 < 𝛼∗𝑖 ≤ 1∕𝜈𝑛. Thus, we have 1 =
∑𝑛

𝑖=1 𝛼
∗
𝑖 + 𝛼∗0 ≤ 𝑛𝑆𝑉 ∕𝜈𝑛 + 𝛼∗0 , and so 𝜈𝑛(1 − 𝛼∗0 ) ≤ 𝑛𝑆𝑉 . □

In particular, if 𝜈 < 1∕𝑛 then 𝑛𝑂𝐿 ≤ 𝜈𝑛(1 − 𝛼0) < 1, so 𝑛𝑂𝐿 = 0, and
no outliers would be allowed in this case. Therefore, an appropriate
interval of values for 𝜈, which should be small enough to allow for few
if any outliers, is [1∕𝑛, 0.1] whenever 𝑛 ≥ 10, and [0.1, 0.3] whenever
𝑛 ≤ 10. Thus, unless we have very few DMUs, we allow for a maximum
of 10% of DMUs to be outliers, a minimum of 0, and we choose the
value of 𝜈 in this interval that yields the estimator that attains the
smallest mean squared error on the test set. In terms of computing
time, we note that by [28, Table 1], larger values of 𝜈 yield longer
training times, whereas choosing a small 𝜈, as we do, does not make the
algorithm much slower than the algorithm without this regularization
term.
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3.5. Technical inefficiency

We now describe how to calculate the technical inefficiency of each
DMU with respect to 𝑇̂uDEA. For this purpose, we choose the directional
istance function (DDF), as described in Definition 2.2 with 𝐠 ∈ R𝑚+𝑠

+ ,
and 𝐠 ≠ 𝟎. To adapt it to the uDEA setting, we let (𝐰∗, 𝝃∗, 𝜌∗) be an
optimal solution of (5) and consider 𝑇̂uDEA. Then, in order to obtain the
inefficiency 𝛿 of a DMU 𝐳, we solve the following optimization problem:

𝛿uDEA(𝐳, 𝐠) = max{𝛿 ∈ R ∶ (𝐳 + 𝛿𝐠) ∈ 𝑇̂uDEA}

= max{𝛿 ∶ ⟨𝐰∗ ⋅ 𝝓(𝐳 + 𝛿𝐠)⟩ ≥ 𝜌∗}. (10)

This program, however, is not linear due to the appearance of
he maximum function in the transformation mapping 𝝓. Hence, we
inearize it by adding a new variable 𝝈 ∈ Rℎ. We then obtain the
ollowing linear program:

max
𝛿∈R,𝝈∈Rℎ

𝑀𝛿 −
𝑚+𝑠+ℎ
∑

𝑗=𝑚+𝑠+1
𝜎𝑗

subject to −
𝑚+𝑠
∑

𝑗=1
𝑤∗

𝑗 (𝑧(𝑗) + 𝛿𝑔(𝑗)) −
𝑚+𝑠+ℎ
∑

𝑗=𝑚+𝑠+1
𝑤∗

𝑗 𝜎𝑗 ≥ 𝜌∗

𝜎𝑗 ≥ 𝜇 ∀𝑗 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}

𝜎𝑗 ≥
𝑚+𝑠
∑

𝑘=1

[

𝑝𝑗 (𝑘) (𝑧(𝑘) + 𝛿𝑔(𝑘))
]

+ 𝑞𝑗 ∀𝑗 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}

(11)

Note that, in order to force 𝜎𝑗 to take the value 𝜎𝑗 = max{𝜇, ⟨𝐩𝑗 ⋅ (𝐳+
𝛿𝐠)⟩+ 𝑞𝑗}, we penalize it in the objective function, and 𝑀 is a constant
large enough so that small changes in 𝛿 affect the objective function
more than corresponding changes in 𝝈.

We now prove that an optimal solution (𝛿∗,𝝈∗) of (11) gives us an
optimal solution of (10), so that we can solve the linear problem to
obtain the directional distance function inefficiency of a DMU when
uDEA is applied. We first prove the following auxiliary result.

Lemma 3.10. Let (𝛿∗,𝝈∗) be an optimal solution of (11). Then, 𝜎∗𝑗 =
max{𝜇, ⟨𝐩𝑗 ⋅ (𝐳 + 𝛿∗𝐠)⟩ + 𝑞𝑗} for all 𝑗 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}.

Proof. Suppose (𝛿∗,𝝈∗) is an optimal solution to (11) with 𝜎∗𝑗 >
max{𝜇, ⟨𝐩𝑗 ⋅ (𝐳 + 𝛿∗𝐠)⟩+ 𝑞𝑗} for some 𝑗. Then, we consider the potential
solution (𝛿∗,𝝈′) where 𝜎′𝑖 = 𝜎∗𝑖 for 𝑖 ≠ 𝑗 and 𝜎′𝑗 = max{𝜇, ⟨𝐩𝑗 ⋅ (𝐳+𝛿∗𝐠)⟩+
𝑞𝑗} < 𝜎∗𝑗 . This is still a feasible point of (11) as the first restriction
becomes greater, and the last two restrictions do not change, so it is
still a solution to the optimization problem with a larger objective,
contradicting the assumption that (𝛿∗,𝝈∗) was optimal. □

We can now prove the main result.

Proposition 3.11. The optimal value of (10) is 𝛿∗ if and only if (𝛿∗,𝝈∗)
is an optimal solution of (11), with 𝜎∗𝑗 = max{𝜇, ⟨𝐩𝑗 ⋅ (𝐳 + 𝛿∗𝐠)⟩ + 𝑞𝑗} for
all 𝑗 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}.

Proof. As 𝐠 ≥ 𝟎, whenever 𝛿1 ≥ 𝛿2 we have 𝐳 + 𝛿1𝐠 ≥ 𝐳 + 𝛿2𝐠 so by
Lemma 3.1 applied to each component of 𝝓, and since 𝐰∗ ≥ 𝟎, we have
⟨𝐰∗ ⋅𝝓(𝐳 + 𝛿1𝐠)⟩ ≤ ⟨𝐰∗ ⋅𝝓(𝐳 + 𝛿2𝐠)⟩ and thus, whenever 𝛿1 is an optimal
solution of (10), we have ⟨𝐰∗ ⋅ 𝝓(𝐳 + 𝛿1𝐠)⟩ = 𝜌∗.

Let (𝛿∗,𝝈∗) be a solution of (11) and suppose that 𝛿∗ is not the
optimal value of (10). Then there exists 𝛿′ > 𝛿∗ such that 𝛿′ is an
optimal solution of (10). Then, ⟨𝐰∗ ⋅ 𝝓(𝐳 + 𝛿′𝐠)⟩ = 𝜌∗.

Define 𝝈′ by 𝜎′𝑗 = max{𝜇, ⟨𝐩𝑗 ⋅ (𝐳 + 𝛿′𝐠)⟩ + 𝑞𝑗} for each 𝑗 ∈ {𝑚 +
𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}. Then (𝛿′,𝝈′) is a feasible solution of (11), as
−
∑𝑚+𝑠

𝑗=1 𝑤∗
𝑗 𝑧(𝑗) −

∑𝑚+𝑠+ℎ
𝑗=𝑚+𝑠+1 𝑤

∗
𝑗 𝜎

′
𝑗 = 𝜌∗ and by definition of 𝝈′.

Since 𝛿′ > 𝛿∗ and 𝑀 is large enough (to offset the effect of the
change in 𝜎′𝑗), this is a solution of (11) with 𝑀𝛿′ −

∑𝑚+𝑠+ℎ
𝑗=𝑚+𝑠+1 𝜎

′
𝑗 >

𝑀𝛿∗ −
∑𝑚+𝑠+ℎ

𝑗=𝑚+𝑠+1 𝜎
∗
𝑗 , hence (𝛿∗,𝝈∗) is not an optimal solution of (11),

contradicting our assumption. Thus, whenever (𝛿∗,𝝈∗) is an optimal
∗

8

solution of (11), 𝛿 is the optimal value of (10). s
Table 2
Hyperparameters and variables of uDEA.

Hyperparameters Primal variables Dual variables

ℎ ∈ N 𝐰 ∈ R𝑚+𝑠+ℎ
+ 𝜶, 𝜷 ∈ R𝑛

+
𝜈 ∈ R 𝝃 ∈ R𝑛

+ 𝜸 ∈ R𝑚+𝑠+ℎ
+

𝜇 ∈ R− 𝜌 ∈ R 𝛼0 ∈ R
𝐩𝑘 ∈ R𝑚+𝑠

+ for 𝑘 ∈ {𝑚 + 𝑠 + 1,… , 𝑚 + 𝑠 + ℎ}
𝑞𝑘 ∈ R

Conversely, assume that 𝛿(†) is the optimal value of (10). Define
𝜎(†)𝑗 ∶= max{𝜇, ⟨𝐩𝑗 ⋅ (𝐳 + 𝛿(†)𝐠)⟩ + 𝑞𝑗}. We want to prove that (𝛿(†),𝝈(†))
is an optimal solution of (11). Since 𝛿(†) is a solution of (10) and by
definition of 𝝈(†), (𝛿(†),𝝈(†)) is a feasible solution of (11). Now, assume
hat (𝛿(†),𝝈(†)) is not optimal, then there exists an optimal solution
𝛿′,𝝈′) of (11) which satisfies 𝑀𝛿′−

∑𝑚+𝑠+ℎ
𝑗=𝑚+𝑠+1 𝜎

′
𝑗 > 𝑀𝛿(†)−

∑𝑚+𝑠+ℎ
𝑗=𝑚+𝑠+1 𝜎

(†)
𝑗 .

Now, as 𝑀 is large enough, we have 𝛿′ ≥ 𝛿(†) and, as 𝛿(†) is the
ptimal value of (10), 𝛿′ ≤ 𝛿(†). Thus, we have 𝛿′ = 𝛿(†). But then
emma 3.10 implies that for all 𝑗 we must have 𝜎(†)𝑗 = 𝜎′𝑗 , contradicting
ur setup. Hence, we conclude that (𝛿(†),𝝈(†)) is an optimal solution of
11). □

.6. Steps of the algorithm

In this section, we gather the various pieces previously introduced
nd describe step by step the uDEA algorithm. We summarize the roles
f the various variables involved in the uDEA algorithm in Table 2. We
ecall that 𝐳𝑖 ∈ R𝑚

− × R𝑠
+ are the given netputs, so that the values of

, 𝑚, 𝑠 are given by the dataset .
The total number of potential hyperparameters is 3 + ℎ(𝑚 + 𝑠 + 1),

hich we observe is quadratic in 𝑚 and 𝑠, obtained from the dataset,
s well as ℎ, which is a hyperparameter.

The steps of the algorithm are as follows3 (see also Fig. 1).

1. We begin by letting ℎ = 𝑛, that is, we choose to have a
hyperplane corresponding to each DMU.

2. We solve (8) for each 𝐳𝑖, obtaining the values of 𝐩𝑘, 𝑞𝑘 that
determine the ℎ = 𝑛 hyperplanes that will form the feature
mapping 𝝓. Furthermore, this step yields the values for 𝜇𝑖, so
we calculate 𝜇𝑚𝑖𝑛 = min𝑖{𝜇𝑖}.

3. We plug these values of 𝐩𝑘 and 𝑞𝑘 into 𝝓. In particular, for each
𝐳𝑖 ∈ , 𝝓(𝐳𝑖) is a fixed vector, as well as 𝝓(𝟎).

4. We do a train-test split of the dataset  with 𝑡𝑟𝑎𝑖𝑛 consisting of
70% of the data and 𝑡𝑒𝑠𝑡 the remaining 30%.

5. At this point, the quadratic Program (5) (on 𝑡𝑟𝑎𝑖𝑛) is ready to
be solved, with variables 𝐰, 𝝃, 𝜌, and the hyperparameters left to
tune are 𝜈 and 𝜇. Everything else in the program is fixed.

6. Then, the hyperparameters 𝜈 and 𝜇 remain to be tuned. We
suggest choosing 5 possible values for each from their respective
appropriate intervals. One possible choice for the intervals is
𝜇 ∈

[

𝜇𝑚𝑖𝑛, 0
)

, and 𝜈 ∈ [1∕𝑛, 0.1] (whenever 𝑛 ≥ 10).
7. For each pair (𝜇, 𝜈), we solve Model (5) using the training set,

obtaining the optimal solution (𝐰∗, 𝝃∗, 𝜌∗).
8. For each 𝐳𝑖 in the test set, we solve Program (11) to calculate

𝛿uDEA(𝐳𝑖, 𝐠𝑖) using Farrell’s output-oriented measure of efficiency,
that is 𝐠𝑖 = (0,… , 0, 𝑧𝑖(𝑚 + 1),… , 𝑧𝑖(𝑚 + 𝑠)).

9. We then calculate the uDEA-predicted outputs for 𝐳𝑖 using 𝐳̂𝑖 =
𝐳𝑖 + 𝛿uDEA(𝐳𝑖, 𝐠𝑖)𝐠𝑖.

10. Then, we evaluate the performance of each model by considering
the mean squared error in prediction in each of the values of
the dataset. As such, we calculate MSE(𝜇, 𝜈) = ∑

𝐳𝑖∈
∑

𝑘(𝑧̂𝑖(𝑘) −

3 See https://github.com/JuanAparicioUMH/uDEA, where each step is
hown in detail and, additionally, an example is provided and solved by uDEA.

https://github.com/JuanAparicioUMH/uDEA
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Fig. 1. Flowchart of the uDEA algorithm.
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𝑧𝑖(𝑘))2 and choose the hyperparameter pair (𝜇∗, 𝜈∗) which mini-
mizes this value.

11. Once we have selected the best 𝜇∗ and 𝜈∗, we solve Program (5)
with these values of 𝜇∗ and 𝜈∗ on the whole dataset , obtaining
the final values for (𝐰∗, 𝝃∗, 𝜌∗).

. Computational experience

This section shows the results obtained from a computational ex-
erience with the aim of comparing the DEA and uDEA methods.
ence, we resort to data simulation for a systematic assessment of these

rontier methods. The descriptions of the frontiers that we simulate
ppear in Table 3.
9

For the theoretical production frontiers, we used several typical
obb–Douglas functions from the literature, where the exponents of
he considered variables add up to 0.5. The input data were randomly
ampled from 𝑈𝑛𝑖[0, 1] and the inefficiency term from 𝑢 ∼ exp(1∕3).

We tested with data sizes of 30, 50, 70, 100 and 200. We ran 100
trials for each combination of number of inputs and sample size. The
performance of each method is evaluated by two typical measures: the
mean squared error (MSE) and bias.

In our simulation setting, we resort to a Cobb–Douglas production
function [5], which is a classical and usual specification of a production
function in microeconomics [45]. In a Cobb–Douglas production func-
tion, the exponent of each input represents the share of an increase
in the output attributable to that input. Additionally, the sum of the
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Table 3
Considered theoretical production frontiers.

# inputs 𝑓 (𝐱)

1 𝑓 (𝐱) = 𝑥0.51
2 𝑓 (𝐱) = 𝑥0.41 ⋅ 𝑥0.12

3 𝑓 (𝐱) = 𝑥0.31 ⋅ 𝑥0.12 ⋅ 𝑥0.13
4 𝑓 (𝐱) = 𝑥0.31 ⋅ 𝑥0.12 ⋅ 𝑥0.083 ⋅ 𝑥0.024

5 𝑓 (𝐱) = 𝑥0.31 ⋅ 𝑥0.12 ⋅ 𝑥0.083 ⋅ 𝑥0.014 ⋅ 𝑥0.015

6 𝑓 (𝐱) = 𝑥0.31 ⋅ 𝑥0.12 ⋅ 𝑥0.083 ⋅ 𝑥0.014 ⋅ 𝑥0.0065 ⋅ 𝑥0.0046

9 𝑓 (𝐱) = 𝑥0.31 ⋅ 𝑥0.12 ⋅ 𝑥0.083 ⋅ 𝑥0.0054 ⋅ 𝑥0.0045 ⋅ 𝑥0.0016 ⋅ 𝑥0.0057 ⋅ 𝑥0.0048 ⋅ 𝑥0.0019

12 𝑓 (𝐱) = 𝑥0.21 ⋅ 𝑥0.0752 ⋅ 𝑥0.0253 ⋅ 𝑥0.054 ⋅ 𝑥0.055 ⋅ 𝑥0.086 ⋅ 𝑥0.0057 ⋅ 𝑥0.0048 ⋅ 𝑥0.0019 ⋅ 𝑥0.00510
⋅ 𝑥0.00411 ⋅ 𝑥0.00112

15 𝑓 (𝐱) = 𝑥0.151 ⋅ 𝑥0.0252 ⋅ 𝑥0.0253 ⋅ 𝑥0.054 ⋅ 𝑥0.0255 ⋅ 𝑥0.0256 ⋅ 𝑥0.057 ⋅ 𝑥0.058 ⋅ 𝑥0.089 ⋅ 𝑥0.00510
⋅ 𝑥0.00411 ⋅ 𝑥0.00112 ⋅ 𝑥0.00513 ⋅ 𝑥0.00414 ⋅ 𝑥0.00115

exponents is associated with the returns to scale of the production
process. In particular, a value less than one in the sum of the exponents
is related to non-increasing returns to scale, while a value equal to
one signals constant returns to scale, and a value greater than one
identifies non-decreasing returns to scale. In our simulation scenarios,
we arbitrarily set this sum to be always equal to 0.5 with the objective
of maintaining this assumption constant for all the analyzed settings (a
similar assumption was made for the corresponding simulation scenar-
ios in [19], and [20], where Cobb–Douglas production functions were
simulated). Other returns to scales and data configurations could be
considered, but this extension is beyond the scope of this paper, and it
is a line for future research.

Table 4 describes the MSE and bias statistics for the two methods
evaluated (DEA and uDEA). The first two columns indicate the sample
size and the number of inputs. The next two columns show the MSE
associated with DEA and uDEA, respectively. The subsequent two
columns indicate the bias of these techniques. In addition, we report in
brackets the relative difference between DEA and uDEA with respect
to MSE and bias for ease of comparison. These percentages are the
reduction in MSE and bias when uDEA is applied instead of DEA.

We observe that in the single-input case the results of both methods
are almost identical, and that as the number of inputs increases, both
the MSE and bias of the uDEA technique grows much more slowly
than in the case of DEA, which translates into increasing percentages of
improvement. When the number of DMUs is small, at a certain point,
increasing the number of inputs results in smaller relative improve-
ments for uDEA when compared to DEA, whereas with larger numbers
of inputs this relative improvement keeps increasing. In some cases,
we obtain up to a 83.34% improvement in MSE and up to a 59.85%
improvement in bias, both of which are attained with 200 DMUs and
15 inputs.

Fig. 2 shows a graphical example of the result of one of our
simulations. This example consists of 1 input, 1 output and 30 DMUs,
and illustrates how, after the fine tuning process, the frontier turns at
appropriate points near the theoretical frontier. In this case, uDEA has
0.0008 MSE and 0.0288 bias whereas DEA yields an MSE of 0.0019 and
bias of 0.0437, a large improvement.

From a computational point of view, it is worth mentioning the
computing time spent in the new approach in comparison with the
DEA technique. The simulations were executed on a PC with a 1.8 GHz
dual-core Intel Core i7 processor, 8 Gigabyte of RAM and a Microsoft
Windows 10 Enterprise operating system. The algorithm was imple-
mented in Python code. So, for an experiment composed by 50 DMUs
and three inputs, the uDEA technique used 7.61s for calculating all the
estimations, while the DEA technique utilized 0.79s (approximately ten
times less than uDEA).

We also compared uDEA with other recent approaches in the same
line of research. In particular, we compared the new method with EAT-
Boosting by [19] and Data Envelopment Analysis Machines (DEAM)
10

o

Table 4
Result of DEA and uDEA estimation methods based on the MSE and bias criteria.

Num. Num. Mean Squared Error BIAS
obs. inp.

DEA uDEA DEA uDEA

30

1 0.0022 0.0022 (0.00%) 0.0437 0.0435 (0.40%)
2 0.0064 0.0058 (9.05%) 0.0776 0.0721 (7.14%)
3 0.0121 0.0056 (53.92%) 0.1082 0.0708 (34.54%)
4 0.0170 0.0058 (65.73%) 0.1283 0.0730 (43.13%)
5 0.0191 0.0048 (74.71%) 0.1361 0.0663 (51.29%)
6 0.0264 0.0080 (69.60%) 0.1605 0.0852 (46.91%)
9 0.0391 0.0163 (58.24%) 0.1961 0.1191 (39.24%)
12 0.0376 0.0244 (35.18%) 0.1920 0.1472 (23.34%)
15 0.0396 0.0367 (7.42%) 0.1973 0.1830 (7.29%)

50

1 0.0011 0.0011 (0.00%) 0.0308 0.0308 (0.00%)
2 0.0038 0.0037 (2.46%) 0.0604 0.0595 (1.52%)
3 0.0086 0.0055 (35.52%) 0.0917 0.0718 (21.72%)
4 0.0141 0.0060 (57.23%) 0.1172 0.0753 (35.76%)
5 0.0139 0.0044 (68.34%) 0.1170 0.0641 (45.23%)
6 0.0233 0.0083 (64.31%) 0.1513 0.0883 (41.64%)
9 0.0327 0.0093 (71.63%) 0.1796 0.0918 (48.87%)
12 0.0357 0.0099 (72.31%) 0.1878 0.0944 (49.75%)
15 0.0370 0.0240 (35.20%) 0.1911 0.1448 (24.21%)

70

1 0.0006 0.0006 (0.00%) 0.0231 0.0231 (0.00%)
2 0.0030 0.0029 (2.07%) 0.0536 0.0522 (2.69%)
3 0.0069 0.0046 (33.28%) 0.0822 0.0664 (19.28%)
4 0.0109 0.0055 (49.66%) 0.1035 0.0726 (29.88%)
5 0.0120 0.0044 (63.56%) 0.1089 0.0643 (41.01%)
6 0.0194 0.0090 (53.51%) 0.1385 0.0920 (33.55%)
9 0.0298 0.0092 (69.28%) 0.1715 0.0918 (46.46%)
12 0.0340 0.0083 (75.57%) 0.1834 0.0879 (52.06%)
15 0.0365 0.0124 (65.99%) 0.1902 0.1010 (46.89%)

100

1 0.0004 0.0004 (0.00%) 0.0181 0.0180 (0.50%)
2 0.0023 0.0022 (3.98%) 0.0472 0.0455 (3.71%)
3 0.0052 0.0040 (23.82%) 0.0716 0.0619 (13.53%)
4 0.0095 0.0044 (53.62%) 0.0968 0.0654 (32.49%)
5 0.0107 0.0048 (55.11%) 0.1031 0.0681 (33.94%)
6 0.0166 0.0079 (52.16%) 0.1282 0.0876 (31.65%)
9 0.0279 0.0107 (61.51%) 0.1664 0.1006 (39.52%)
12 0.0336 0.0071 (78.83%) 0.1827 0.0816 (55.36%)
15 0.0356 0.0080 (77.68%) 0.1883 0.0841 (55.35%)

200

1 0.0002 0.0002 (0.00%) 0.0122 0.0121 (0.33%)
2 0.0011 0.0011 (0.00%) 0.0331 0.0331 (0.00%)
3 0.0030 0.0029 (3.39%) 0.0545 0.0545 (0.00%)
4 0.0062 0.0038 (38.89%) 0.0781 0.0608 (22.14%)
5 0.0074 0.0038 (49.35%) 0.0859 0.0606 (29.52%)
6 0.0125 0.0058 (53.77%) 0.1114 0.0756 (32.16%)
9 0.0235 0.0095 (59.75%) 0.1530 0.0962 (37.12%)
12 0.0305 0.0073 (76.18%) 0.1743 0.0838 (51.89%)
15 0.0345 0.0057 (83.34%) 0.1855 0.0745 (59.85%)

by [20]. In the first case, the boosting algorithm is used, while, in
the second case, the Structural Risk Minimization principle in machine
learning is applied. In both cases, the provided estimate of the technol-
ogy satisfies the following set of microeconomic properties: convexity,
free disposability and envelopment. The same happens in the case of
uDEA. These facts make the comparison among these techniques fair.
Another recent approach based on machine learning to estimate effi-
ciency scores is [46]. However, the comparison with this last technique
is not direct because this method was not designed to guarantee the
three previously mentioned properties on the technology.

Table 5 shows the results obtained by the EATBoosting and DEAM
approaches4. Combining this information with the results obtained
using the new method in Table 4, we observe that uDEA is competitive

4 In both cases, we executed the corresponding codes during approximately
0 days, i.e., the same time spent by uDEA to get the results for all the
imulated scenarios. In 10 days, the EATBoosting method by [19] was able
o execute all the scenarios, although we had to resort to a heuristic version
f the model suggested by these authors. In the case of the DEAM approach
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Fig. 2. The uDEA frontier vs the DEA and theoretical frontiers.
with respect to the other approaches regarding both bias and mean
squared error. Our results seem to indicate that the uDEA estimator
could be considered as one of the valid alternatives that currently
exist in the literature on the measurement of technical efficiency.
Additionally, and from a computational point of view, the execution of
the EATBoosting method was only possible by resorting to the heuristic
version of the model proposed by their authors (see [19]). As for DEAM,
it is worth mentioning that, in the period of 10 days used for all the
approaches to solve all the simulated scenarios, this technique was only
able to solve the settings involving up to 70 DMUs. In contrast, the
new approach, based on the adaptation of OneClassSVM, determined
the solution for all the simulated scenarios and without resorting to
heuristic methods.

5. Conclusions and future works

In this paper, we have developed an unsupervised machine learn-
ing method, which we call uDEA, to study production frontiers. Up
until quite recently, these areas had grown separately without much
intertwining despite their shared characteristics. After all, the study of
production frontiers can be seen as a learning problem consisting of
determining the boundary of the region of feasible points or technology
by using the observed DMUs as learning data. Recently, a few bridges
have been built using various supervised machine learning methods for
the purpose of frontier estimation, such as Boosting and the Structural
Risk Minimization principle in [19,20], respectively. These have a dis-
tinguished output variable and thus face challenges when generalizing
to higher output dimensions. This unsupervised, homogeneous treat-
ment of the variables is, in a way, already present in DEA, when the
netput notation is used, since the only difference between inputs and
outputs comes from the property of free disposability, which disappears
in netput notation.

The main novel contribution of our method of unsupervised Data
Envelopment Analysis (uDEA) is the unsupervised treatment of the
data, by not distinguishing between input and output variables, which
allows it to generalize without any changes to the multi-output setting.
We do this by adapting the OneClassSVM algorithm to deal with
production functions in the netput setting, with the use of a piecewise
linear transformation function in order to obtain a piecewise linear

by [20], their algorithm only provided the results for the scenarios up to 70
observations in this period.
11
frontier similar to the frontier obtained by DEA. We prove that the
uDEA estimated technology satisfies convexity and free disposability,
while it does not fulfill minimal extrapolation. Then, we describe
a DEA-based method for obtaining the hyperplanes involved in this
transformation function, and introduce two hyperparameters: 𝜈, which
controls the proportion of outliers allowed, and 𝜇, which acts as an
offset parameter thus allowing flexibility in the frontier obtained.

We have evaluated the performance of the uDEA algorithm against
the standard DEA with simulated data using Monte Carlo experiments
where we observe that uDEA outperforms DEA with respect to multiple
traditional error measures such as mean squared error (MSE) and
bias, with larger improvements as the number of variables and DMUs
increases. Comparing the MSE values, we observe that with only one
input and one output, the performance is very similar, and as the
number of input variables increases, the percentage of improvement
of the uDEA score tends to grow when compared to the corresponding
DEA one, reaching improvement values of up to 83%. Regarding the
bias, we observe a similar increasing tendency, reaching up to 60%
improvement in some cases. We also observe that the hyperparameter 𝜈
controlling the proportion of outliers allowed takes small values, which
slightly increase as more DMUs and dimensions are added.

Another advantage of uDEA is that, whereas DEA suffers, via the
assumption of the minimal extrapolation property, from a problem of
overfitting in the machine learning sense, uDEA avoids this problem
via the use of a SVM-style regularizer, and yields an estimated frontier
which is closer to the theoretical frontier than the convex hull of the
data. Furthermore, whereas DEA determines the degree of ‘relative’
technical efficiency for each DMU, our approach identifies ‘absolute’
efficiency, that is, efficiency measured with respect to the (estimated)
production frontier associated with the data generating process from
which the data is drawn, instead of the efficiency measured in compar-
ative terms with the performance of exactly the 𝑛 observed units in our
data sample.

Finally, we mention some possible adaptations of the uDEA algo-
rithm for further research. The choice of transformation function and
the position of the hyperplanes will greatly affect the frontiers obtained
and may admit different shapes to explore. The hyperplane parameters
could also be tuned as hyperparameters, although due to their poten-
tially large number, this will probably be computationally expensive.
Among the regularization methods that exist in the literature, in this
paper, we resorted to the same type used by [28], since we have
based our model in the adaptation of the technique introduced by these
same authors. Nevertheless, other regularizations could be used (see,
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Table 5
Result of EATBoosting and DEAM estimation methods based on the MSE and bias
criteria.

Num. Num. Mean Squared Error BIAS
obs. inp.

EATBoosting DEAM EATBoosting DEAM

30

1 0.0017 0.0018 0.0302 0.0326
2 0.0041 0.0053 0.0481 0.0574
3 0.0072 0.0083 0.0671 0.0733
4 0.0102 0.0103 0.0778 0.0805
5 0.0126 0.0127 0.0845 0.0869
6 0.0147 0.0147 0.0912 0.0928
9 0.0189 0.0190 0.1027 0.1052
12 0.0222 0.0214 0.1126 0.1125
15 0.0231 0.0278 0.1147 0.1243

50

1 0.0011 0.0009 0.0225 0.0236
2 0.0024 0.0034 0.0339 0.0465
3 0.0043 0.0060 0.0474 0.0631
4 0.0060 0.0078 0.0565 0.0687
5 0.0085 0.0112 0.0679 0.0810
6 0.0108 0.0117 0.0769 0.0830
9 0.0144 0.0166 0.0890 0.0981
12 0.0147 0.0189 0.0906 0.1054
15 0.0181 0.0201 0.1009 0.1027

70

1 0.0012 0.0006 0.0236 0.0195
2 0.0021 0.0025 0.0323 0.0401
3 0.0034 0.0047 0.0411 0.0554
4 0.0047 0.0067 0.0479 0.0645
5 0.0059 0.0091 0.0552 0.0738
6 0.0081 0.0116 0.0638 0.0823
9 0.0111 0.0163 0.0756 0.0982
12 0.0121 0.0170 0.0818 0.1000
15 0.0136 0.0170 0.0862 0.1004

100

1 0.0013 – 0.0266 –
2 0.0023 – 0.0363 –
3 0.0030 – 0.0396 –
4 0.0033 – 0.0404 –
5 0.0044 – 0.0464 –
6 0.0053 – 0.0511 –
9 0.0081 – 0.0646 –
12 0.0093 – 0.0712 –
15 0.0117 – 0.4848 –

200

1 0.0019 – 0.0349 –
2 0.0039 – 0.0512 –
3 0.0045 – 0.0539 –
4 0.0035 – 0.0446 –
5 0.0034 – 0.0429 –
6 0.0040 – 0.0450 –
9 0.0051 – 0.0502 –
12 0.0059 – 0.0556 –
15 0.0070 – 0.0515 –

for example, [47]); a topic that deserves further exploration. Other
research lines could be the application of the new technique to real
databases in various empirical contexts to further check the validity of
the technique in practice, in particular multi-output databases.

Furthermore, when efficiency measurement is the concern, a lim-
itation of the new method, in comparison with the standard DEA
technique, is that efficiency scores are obtained in a second stage after
the technology has been estimated. The uDEA model includes one-sided
error terms (𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑛). However, the direct interpretation of
hese quantities as technical inefficiency of the assessed units is not
rivial. In OneClassSVM, which is the technique that we have adapted
o the production context, the value of each decision variable 𝜉𝑖 is equal
o zero for every observation (DMU in our framework) located inside
he technology and only attains strictly positive values for observations
hich are deemed as (slight) outliers for the new technique (weighed
y the hyperparameter 𝜈, which can be tuned). Proposing solutions
or this weakness of the new approach could be seen as an interesting
ine for future research. In addition, the possibility of using uDEA to
easure productivity change over time and decompose this measure
12
nto its usual drivers, i.e., efficiency change, scale efficiency change and
echnical change, is a topic that deserves future explorations.
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Appendix. Calculation of the dual problem

The Lagrangian corresponding to (5), with KKT multipliers
𝜶, 𝜷, 𝜸, 𝛼0, is:

𝐿(𝐰, 𝝃, 𝜌,𝜶, 𝜷, 𝜸, 𝛼0) =
1
2
‖𝐰‖2 + 1

𝜈𝑛

𝑛
∑

𝑖=1
𝜉𝑖 − 𝜌

+
𝑛
∑

𝑖=1
𝛼𝑖[−⟨𝐰 ⋅ 𝝓(𝐳𝑖)⟩ + 𝜌 − 𝜉𝑖]

+
𝑛
∑

𝑖=1
𝛽𝑖(−𝜉𝑖)

+
𝑚+𝑠+ℎ
∑

𝑖=1
𝛾𝑖(−𝑤𝑖)

+ 𝛼0(𝜌 − ⟨𝐰 ⋅ 𝝓(𝟎)⟩)

e observe that 𝜶, 𝜷 ∈ R𝑛 while 𝜸 ∈ R𝑚+𝑠+ℎ since 𝐰 ∈ R𝑚+𝑠+ℎ,
nd 𝛼0 ∈ R. Differentiating with respect to the primal variables and
quating to 0 we obtain

𝑑𝐿
𝑑𝐰

= 𝐰 −
𝑛
∑

𝑖=1
𝛼𝑖𝝓(𝐳𝑖) − 𝜸 − 𝛼0𝝓(𝟎) yielding 𝐰 =

𝑛
∑

𝑖=1
𝛼𝑖𝝓(𝐳𝑖) + 𝜸 + 𝛼0𝝓(𝟎),

(A.1)

𝑑𝐿
𝑑𝜉𝑖

= 1
𝜈𝑛

− 𝛼𝑖 − 𝛽𝑖 yielding 0 ≤ 𝛼𝑖 ≤
1
𝜈𝑛

(A.2)

and

𝑑𝐿 = −1 +
𝑛
∑

𝛼𝑖 + 𝛼0, yielding
𝑛
∑

𝛼𝑖 + 𝛼0 = 1. (A.3)

𝑑𝜌 𝑖=1 𝑖=1
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∑

0

𝐿

The above expressions hold at any stationary point of 𝐿, so we
substitute them into 𝐿.

𝐿(𝐰, 𝝃, 𝜌,𝜶, 𝜷, 𝜸, 𝛼0) =
1
2
‖𝐰‖2 + 1

𝜈𝑛

𝑛
∑

𝑖=1
𝜉𝑖 − 𝜌 +

𝑛
∑

𝑖=1
𝛼𝑖[−⟨𝐰 ⋅ 𝝓(𝐳𝑖)⟩ + 𝜌 − 𝜉𝑖]

+
𝑛
∑

𝑖=1
𝛽𝑖(−𝜉𝑖) +

𝑚+𝑠+ℎ
∑

𝑖=1
𝛾𝑖(−𝑤𝑖) + 𝛼0(𝜌 − ⟨𝐰 ⋅ 𝝓(𝟎)⟩)

(A.4)

First, we expand each of the components separately, obtaining

1
2
‖𝐰‖2 = 1

2
⟨𝐰 ⋅ 𝐰⟩ = 1

2

‖

‖

‖

‖

‖

𝑛
∑

𝑖=1
𝛼𝑖𝝓(𝐳𝑖) + 𝜸 + 𝛼0𝝓(𝟎)

‖

‖

‖

‖

‖

2

=

1
2

( 𝑛
∑

𝑖,𝑗=1
𝛼𝑖𝛼𝑗⟨𝝓(𝐳𝑖) ⋅ 𝝓(𝐳𝑗 )⟩ + 2(

𝑛
∑

𝑖=1
𝛼𝑖⟨𝝓(𝐳𝑖) ⋅ 𝜸⟩) + ⟨𝜸 ⋅ 𝜸⟩

+𝛼20⟨𝝓(𝟎) ⋅ 𝝓(𝟎)⟩ + 2
𝑛
∑

𝑖=1
𝛼𝑖𝛼0⟨𝝓(𝐳𝑖) ⋅ 𝝓(𝟎)⟩ + 2𝛼0⟨𝜸 ⋅ 𝝓(𝟎)⟩

)

,

(A.5)

𝑛
∑

𝑖=1
𝛼𝑖[−⟨𝐰 ⋅ 𝝓(𝐳𝑖)⟩ + 𝜌 − 𝜉𝑖] = −

𝑛
∑

𝑖=1
𝛼𝑖

⟨

(
𝑛
∑

𝑗=1
𝛼𝑗𝝓(𝐳𝑗 ) + 𝜸 + 𝛼0𝝓(𝟎)) ⋅ 𝝓(𝐳𝑖)

⟩

+
𝑛
∑

𝑖=1
𝛼𝑖𝜌 −

𝑛
∑

𝑖=1
𝛼𝑖𝜉𝑖 =

−
𝑛
∑

𝑖=1
𝛼𝑖

𝑛
∑

𝑖=𝑗
𝛼𝑗⟨𝝓(𝐳𝑗 ) ⋅ 𝝓(𝐳𝑖)⟩ −

𝑛
∑

𝑖=1
𝛼𝑖⟨𝜸 ⋅ 𝝓(𝐳𝑖)⟩

−
𝑛
∑

𝑖=1
𝛼𝑖𝛼0 ⟨𝝓(𝟎) ⋅ 𝝓(𝐳𝑖)⟩

+
𝑛
∑

𝑖=1
𝛼𝑖𝜌 −

𝑛
∑

𝑖=1
𝛼𝑖𝜉𝑖,

(A.6)

and finally

−
𝑚+𝑠+ℎ
∑

𝑖=1
𝛾𝑖𝑤𝑖 = −⟨𝜸 ⋅ 𝐰⟩ = −

⟨

𝜸 ⋅

( 𝑛
∑

𝑖=1
𝛼𝑖𝝓(𝐳𝑖) + 𝜸 + 𝛼0𝝓(𝟎)

)⟩

= −
𝑚+𝑠+ℎ
∑

𝑖=1
𝛼𝑖⟨𝜸 ⋅ 𝝓(𝐳𝑖)⟩ − ⟨𝜸 ⋅ 𝜸⟩ − 𝛼0⟨𝜸 ⋅ 𝝓(𝟎)⟩.

(A.7)

With respect to 𝝃, using (A.2) we obtain (𝑛 1
𝜈𝑛 −

∑𝑛
𝑖=1 𝛼𝑖 −

∑𝑛
𝑖=1 𝛽𝑖)𝝃 =

𝑛
𝑖=1(

1
𝜈𝑛 −𝛼𝑖−𝛽𝑖)𝝃 = 0𝝃. With 𝜌, using (A.3) we get (−1+∑𝑛

𝑖=1 𝛼𝑖+𝛼0)𝜌 =
𝜌. Substituting the above expressions into 𝐿, we obtain

(𝐰, 𝝃, 𝜌,𝜶, 𝜷, 𝜸, 𝛼0) = ( 1
2
− 1)

𝑛
∑

𝑖,𝑗=1
𝛼𝑖𝛼𝑗⟨𝝓(𝐳𝑖) ⋅ 𝝓(𝐳𝑗 )⟩ + (1 − 1 − 1)

𝑛
∑

𝑖=1
𝛼𝑖⟨𝝓(𝐳𝑖) ⋅ 𝜸⟩

+( 1
2
− 1)⟨𝜸 ⋅ 𝜸⟩ + ( 1

2
− 1)𝛼2

0⟨𝝓(𝟎) ⋅ 𝝓(𝟎)⟩ + (1 − 1 − 1)
𝑛
∑

𝑖=1
𝛼𝑖𝛼0 ⟨𝝓(𝟎) ⋅ 𝝓(𝐳𝑖)⟩

+(1 − 1 − 1)𝛼0 ⟨𝜸 ⋅ 𝝓(𝟎)⟩ = −1
2
‖𝐰‖2

(A.8)

Hence, the dual problem to (5) becomes

min
𝜶,𝜸,𝛼0

1
2
‖𝒘‖

2

subject to 0 ≤ 𝛼𝑖 ≤ 1∕𝜈𝑛 for 𝑖 ∈ {1,… , 𝑛},
∑𝑛

𝑖=1 𝛼𝑖 + 𝛼0 = 1,
𝜸 ≥ 𝟎,

(A.9)

where 𝐰 =
∑𝑛 𝛼 𝝓(𝐳 ) + 𝜸 + 𝛼 𝝓(𝟎) is as in (A.1).
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