Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/35086
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoragues, Raul-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorEsteve, Miriam-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-21T11:44:39Z-
dc.date.available2025-01-21T11:44:39Z-
dc.date.created2023-
dc.identifier.citationOperations Research Perspectiveses_ES
dc.identifier.issn2214-7160-
dc.identifier.urihttps://hdl.handle.net/11000/35086-
dc.description.abstractA B S T R A C T In this paper, we introduce an unsupervised machine learning method for production frontier estimation. This new approach satisfies fundamental properties of microeconomics, such as convexity and free disposability (shape constraints). The new method generalizes Data Envelopment Analysis (DEA) through the adaptation of One-Class Support Vector Machines with piecewise linear transformation mapping. The new technique aims to reduce the overfitting problem occurring in DEA. How to measure technical inefficiency through the directional distance function is also introduced. Finally, we evaluate the performance of the new technique via a computational experience, showing that the mean squared error in the estimation of the frontier is up to 83% better than the standard DEA in certain scenarios.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent14es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseries11es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData Envelopment Analysises_ES
dc.subjectUnsupervised machine learninges_ES
dc.subjectSupport Vector Machineses_ES
dc.subjectFrontier analysises_ES
dc.subjectTechnical efficiencyes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleAn unsupervised learning-based generalization of Data Envelopment Analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.orp.2023.100284es_ES
Appears in Collections:
Artículos Estadística, Matemáticas e Informática


Thumbnail

View/Open:
 1-s2.0-S2214716023000192-main.pdf

892,67 kB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???