Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34845

Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis

Título :
Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis
Autor :
González Espinosa, Martín  
López-Espín, Jose J.  
Aparicio, Juan  
Giménez, Domingo
Pastor, Jesus T.  
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2015
URI :
https://hdl.handle.net/11000/34845
Resumen :
Data Envelopment Analysis (DEA) is a non-parametric technique for estimating the technical efficiency of a set of Decision Making Units (DMUs) from a database consisting of inputs and outputs. This paper studies DEA models based on maximizing technical efficiency, which aim to determine the least distance from the evaluated DMU to the production frontier. Usually, these models have been solved through unsatisfactory methods used for combinatorial NP-hard problems. Here, the problem is approached by metaheuristic techniques and the solutions are compared with those of the methodology based on the determination of all the facets of the frontier in DEA. The use of metaheuristics provides solutions close to the optimum with low execution time.
Palabras clave/Materias:
Data Envelopment Analysis
Closest targets
Mathematical Programming
Efficiency Methodologies
Genetic Algorithms
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.procs.2015.05.257
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.