Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34845
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGonzález Espinosa, Martín-
dc.contributor.authorLópez-Espín, Jose J.-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorGiménez, Domingo-
dc.contributor.authorPastor, Jesus T.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-17T10:16:00Z-
dc.date.available2025-01-17T10:16:00Z-
dc.date.created2015-
dc.identifier.citationProcedia Computer Sciencees_ES
dc.identifier.issn1877-0509-
dc.identifier.urihttps://hdl.handle.net/11000/34845-
dc.description.abstractData Envelopment Analysis (DEA) is a non-parametric technique for estimating the technical efficiency of a set of Decision Making Units (DMUs) from a database consisting of inputs and outputs. This paper studies DEA models based on maximizing technical efficiency, which aim to determine the least distance from the evaluated DMU to the production frontier. Usually, these models have been solved through unsatisfactory methods used for combinatorial NP-hard problems. Here, the problem is approached by metaheuristic techniques and the solutions are compared with those of the methodology based on the determination of all the facets of the frontier in DEA. The use of metaheuristics provides solutions close to the optimum with low execution time.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent10es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseries51es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData Envelopment Analysises_ES
dc.subjectClosest targetses_ES
dc.subjectMathematical Programminges_ES
dc.subjectEfficiency Methodologieses_ES
dc.subjectGenetic Algorithmses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleUsing Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.procs.2015.05.257es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 2015_Using genetic algorithms for maximizing technical efficiency in data envelopment analysis.pdf

328,24 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.