Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34508

Efficiency analysis trees: A new methodology for estimating production frontiers through decision trees


no-thumbnailVer/Abrir:

 _10 EfficAnalysisTrees.pdf



1,81 MB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Efficiency analysis trees: A new methodology for estimating production frontiers through decision trees
Autor :
Esteve, Miriam  
Aparicio, Juan  
Rabasa, Alejandro  
Rodriguez-Sala, Jesus Javier  
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2020-07
URI :
https://hdl.handle.net/11000/34508
Resumen :
In this paper, we introduce a new methodology based on regression trees for estimating production frontiers satisfying fundamental postulates of microeconomics, such as free disposability. This new approach, baptized as Efficiency Analysis Trees (EAT), shares some similarities with the Free Disposal Hull (FDH) technique. However, and in contrast to FDH, EAT overcomes the problem of overfitting by using cross-validation to prune back the deep tree obtained in the first stage. Finally, the performance of EAT is measured via Monte Carlo simulations, showing that the new approach reduces the mean squared error associated with the estimation of the true frontier by between 13% and 70% in comparison with the standard FDH
Palabras clave/Materias:
Data envelopment analysis
Frontier analysis
Free disposal hull
Overfitting
Classification and Regression Trees
Área de conocimiento :
CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.eswa.2020.113783
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.