Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34508
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEsteve, Miriam-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorRabasa, Alejandro-
dc.contributor.authorRodriguez-Sala, Jesus Javier-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-15T19:24:33Z-
dc.date.available2025-01-15T19:24:33Z-
dc.date.created2020-07-
dc.identifier.citationExpert Systems with Applications 162 (2020) 113783es_ES
dc.identifier.issn1873-6793-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://hdl.handle.net/11000/34508-
dc.description.abstractIn this paper, we introduce a new methodology based on regression trees for estimating production frontiers satisfying fundamental postulates of microeconomics, such as free disposability. This new approach, baptized as Efficiency Analysis Trees (EAT), shares some similarities with the Free Disposal Hull (FDH) technique. However, and in contrast to FDH, EAT overcomes the problem of overfitting by using cross-validation to prune back the deep tree obtained in the first stage. Finally, the performance of EAT is measured via Monte Carlo simulations, showing that the new approach reduces the mean squared error associated with the estimation of the true frontier by between 13% and 70% in comparison with the standard FDHes_ES
dc.formatapplication/pdfes_ES
dc.format.extent17es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData envelopment analysises_ES
dc.subjectFrontier analysises_ES
dc.subjectFree disposal hulles_ES
dc.subjectOverfittinges_ES
dc.subjectClassification and Regression Treeses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::50 - Generalidades sobre las ciencias purases_ES
dc.titleEfficiency analysis trees: A new methodology for estimating production frontiers through decision treeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.eswa.2020.113783es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 _10 EfficAnalysisTrees.pdf



1,81 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.