Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34294

Short-Term Predictability of Load Series: Characterization of Load Data Bases


no-thumbnailVer/Abrir:

 Short-Term_Predictability_of_Load_Series_Characterization_of_Load_Data_Bases.pdf



1,55 MB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Short-Term Predictability of Load Series: Characterization of Load Data Bases
Autor :
López García, Miguel
VALERO, SERGIO  
Senabre, Carolina  
Gabaldón Marín, Antonio
Editor :
IEEE
Departamento:
Departamentos de la UMH::Ingeniería Mecánica y Energía
Fecha de publicación:
2013
URI :
https://hdl.handle.net/11000/34294
Resumen :
This paper proposes the use of two indicators of the predictability of the load series along with an accuracy value such as mean average percentage error as standard measures of load forecasting performance. Over the last 10 years, there has been a significant increase in load forecasting models proposed in engineering journals.Most of these models provide a description of the inner design of the model, the results from applying this model to a specific data base and the conclusions drawn fromthis application. However, a single accuracy value may not be sufficient to describe the performance of the model when applied to other data bases. The aim of this paper is to provide researchers with a tool that is able to assess the predictability of a load series and, therefore, contextualize the forecasting accuracy reported. Nine different data bases fromthe U.S. have been used; all of them include hourly load and temperature data.
Palabras clave/Materias:
Forecasting
Frequency domain analysis
Performance evaluation
Power demand
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
DOI :
https://doi.org/10.1109/TPWRS.2013.2250317
Aparece en las colecciones:
Artículos Ingeniería Mecánica y Energía



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.