Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34294
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | López García, Miguel | - |
dc.contributor.author | VALERO, SERGIO | - |
dc.contributor.author | Senabre, Carolina | - |
dc.contributor.author | Gabaldón Marín, Antonio | - |
dc.contributor.other | Departamentos de la UMH::Ingeniería Mecánica y Energía | es_ES |
dc.date.accessioned | 2025-01-10T19:01:53Z | - |
dc.date.available | 2025-01-10T19:01:53Z | - |
dc.date.created | 2013 | - |
dc.identifier.citation | IEEE Transactions on Power Systems | es_ES |
dc.identifier.issn | 1558-0679 | - |
dc.identifier.issn | 0885-8950 | - |
dc.identifier.uri | https://hdl.handle.net/11000/34294 | - |
dc.description.abstract | This paper proposes the use of two indicators of the predictability of the load series along with an accuracy value such as mean average percentage error as standard measures of load forecasting performance. Over the last 10 years, there has been a significant increase in load forecasting models proposed in engineering journals.Most of these models provide a description of the inner design of the model, the results from applying this model to a specific data base and the conclusions drawn fromthis application. However, a single accuracy value may not be sufficient to describe the performance of the model when applied to other data bases. The aim of this paper is to provide researchers with a tool that is able to assess the predictability of a load series and, therefore, contextualize the forecasting accuracy reported. Nine different data bases fromthe U.S. have been used; all of them include hourly load and temperature data. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 9 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartofseries | 28 | es_ES |
dc.relation.ispartofseries | 3 | es_ES |
dc.rights | info:eu-repo/semantics/closedAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Forecasting | es_ES |
dc.subject | Frequency domain analysis | es_ES |
dc.subject | Performance evaluation | es_ES |
dc.subject | Power demand | es_ES |
dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria | es_ES |
dc.title | Short-Term Predictability of Load Series: Characterization of Load Data Bases | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TPWRS.2013.2250317 | es_ES |
Ver/Abrir:
Short-Term_Predictability_of_Load_Series_Characterization_of_Load_Data_Bases.pdf
1,55 MB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.