Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34275
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBallesta, Mónica-
dc.contributor.authorPayá, Luis-
dc.contributor.authorCebollada, Sergio-
dc.contributor.authorReinoso, Oscar-
dc.contributor.authorMurcia, Francisco-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2025-01-10T16:39:03Z-
dc.date.available2025-01-10T16:39:03Z-
dc.date.created2021-08-
dc.identifier.citationAppl. Sci. 2021, 11es_ES
dc.identifier.issn2076-3417-
dc.identifier.urihttps://hdl.handle.net/11000/34275-
dc.description.abstractUnderstanding the environment is an essential ability for robots to be autonomous. In this sense, Convolutional Neural Networks (CNNs) can provide holistic descriptors of a scene. These descriptors have proved to be robust in dynamic environments. The aim of this paper is to perform hierarchical localization of a mobile robot in an indoor environment by means of a CNN. Omnidirectional images are used as the input of the CNN. Experiments include a classification study in which the CNNis trained so that the robot is able to find out the room where it is located. Additionally, a transfer learning technique transforms the original CNN into a regression CNN which is able to estimate the coordinates of the position of the robot in a specific room. Regarding classification, the room retrieval task is performed with considerable success. As for the regression stage, when it is performed along with an approach based on splitting rooms, it also provides relatively accurate results.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent17es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCNNses_ES
dc.subjectclassificationes_ES
dc.subjectlocalizationes_ES
dc.subjectmobile robotses_ES
dc.subjectomnidirectional imageses_ES
dc.subjecttransfer learninges_ES
dc.subjectregressiones_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleACNNRegression Approach to Mobile Robot Localization Using Omnidirectional Imageses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/ 10.3390/app11167521es_ES
Aparece en las colecciones:
Artículos Ingeniería de Sistemas y Automática


Vista previa

Ver/Abrir:
 applsci-11-07521-v3 (1) (1).pdf

2,67 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.