Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34275

ACNNRegression Approach to Mobile Robot Localization Using Omnidirectional Images


Vista previa

Ver/Abrir:
 applsci-11-07521-v3 (1) (1).pdf

2,67 MB
Adobe PDF
Compartir:
Título :
ACNNRegression Approach to Mobile Robot Localization Using Omnidirectional Images
Autor :
Ballesta, Mónica  
Payá, Luis
Cebollada, Sergio  
Reinoso, Oscar  
Murcia, Francisco
Editor :
MDPI
Departamento:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Fecha de publicación:
2021-08
URI :
https://hdl.handle.net/11000/34275
Resumen :
Understanding the environment is an essential ability for robots to be autonomous. In this sense, Convolutional Neural Networks (CNNs) can provide holistic descriptors of a scene. These descriptors have proved to be robust in dynamic environments. The aim of this paper is to perform hierarchical localization of a mobile robot in an indoor environment by means of a CNN. Omnidirectional images are used as the input of the CNN. Experiments include a classification study in which the CNNis trained so that the robot is able to find out the room where it is located. Additionally, a transfer learning technique transforms the original CNN into a regression CNN which is able to estimate the coordinates of the position of the robot in a specific room. Regarding classification, the room retrieval task is performed with considerable success. As for the regression stage, when it is performed along with an approach based on splitting rooms, it also provides relatively accurate results.
Palabras clave/Materias:
CNNs
classification
localization
mobile robots
omnidirectional images
transfer learning
regression
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
DOI :
https://doi.org/ 10.3390/app11167521
Aparece en las colecciones:
Artículos Ingeniería de Sistemas y Automática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.