Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34246
Comparison of Dimensionality Reduction Methods for Road Surface Identification System
Ver/Abrir: Comparison.pdf
346,21 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Comparison of Dimensionality Reduction Methods for Road Surface Identification System |
Autor : Safont, Gonzalo Salazar, Addisson Rodríguez, Alberto Vergara, Luis |
Editor : Springer |
Departamento: Departamentos de la UMH::Ingeniería de Comunicaciones |
Fecha de publicación: 2020-07-04 |
URI : https://hdl.handle.net/11000/34246 |
Resumen :
Road surface identification is attracting more attention in recent years
as part of the development of autonomous vehicle technologies. Most works consider
multiple sensors and many features in order to produce a more reliable
and robust result. However, on-board limitations and generalization concerns dictate
the need for dimensionality reduction methods. This work considers four
dimensionality reduction methods: principal component analysis, sequential feature
selection, ReliefF, and a novel feature ranking method. These methods are
used on data obtained from a modified passenger car with four types of sensors.
Results were obtained using three classifiers (linear discriminant analysis, support
vector machines, and random forests) and a late fusion method based on
alpha integration, reaching up to 96.10% accuracy. The considered dimensionality
reduction methods were able to reduce the number of features required for
classification greatly and increased classification performance. Furthermore, the
proposed method was faster than ReliefF and sequential feature selection and
yielded similar improvements.
|
Palabras clave/Materias: Classification Decision fusion Feature selection Road surface identification Self-driving vehicles |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Tipo de documento : info:eu-repo/semantics/bookPart |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1007/978-3-030-52246-9_40 |
Aparece en las colecciones: Capítulo de libros Ingeniería de comunicaciones
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.