Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34246

Comparison of Dimensionality Reduction Methods for Road Surface Identification System


no-thumbnailVer/Abrir:

 Comparison.pdf



346,21 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Comparison of Dimensionality Reduction Methods for Road Surface Identification System
Autor :
Safont, Gonzalo  
Salazar, Addisson  
Rodríguez, Alberto
Vergara, Luis
Editor :
Springer
Departamento:
Departamentos de la UMH::Ingeniería de Comunicaciones
Fecha de publicación:
2020-07-04
URI :
https://hdl.handle.net/11000/34246
Resumen :
Road surface identification is attracting more attention in recent years as part of the development of autonomous vehicle technologies. Most works consider multiple sensors and many features in order to produce a more reliable and robust result. However, on-board limitations and generalization concerns dictate the need for dimensionality reduction methods. This work considers four dimensionality reduction methods: principal component analysis, sequential feature selection, ReliefF, and a novel feature ranking method. These methods are used on data obtained from a modified passenger car with four types of sensors. Results were obtained using three classifiers (linear discriminant analysis, support vector machines, and random forests) and a late fusion method based on alpha integration, reaching up to 96.10% accuracy. The considered dimensionality reduction methods were able to reduce the number of features required for classification greatly and increased classification performance. Furthermore, the proposed method was faster than ReliefF and sequential feature selection and yielded similar improvements.
Palabras clave/Materias:
Classification
Decision fusion
Feature selection
Road surface identification
Self-driving vehicles
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/bookPart
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1007/978-3-030-52246-9_40
Aparece en las colecciones:
Capítulo de libros Ingeniería de comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.